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Bering Sea climate dynamics forecast by novel
multivariate natural hazard assessment method,
utilizing self-deconvolution scheme
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Abstract
This case study advocates a generic state-of-the-art multidimensional natural hazards evaluation methodology, applied to
windspeeds and wave heights, measured in different offshore locations. Due to complex nonlinear spatiotemporal cross-
correlations between different environmental system components and covariates, it is challenging to assess associated
environmental risks, utilizing existing reliability techniques. Hence, it is necessary to develop novel multimodal reliability
and risk assessment methods for natural hazards prognostics further, given global climate variability. Advocated
multivariate risk assessment methodology being particularly suitable for both environmental and offshore/ocean
structural systems, which have been either physically measured or numerically simulated over a representative period.
National Oceanic and Atmospheric Administration (NOAA) buoys, operating in the central Bering Sea, provided the
raw in situ measurements of windspeeds and wave heights, utilized in this case study. A relatively limited amount of
underlying data had been analyzed – only 4 months between June and September 2024. The presented multimodal
natural hazards prognostics methodology has a generic nature, hence, large amounts of measured data can be analyzed
if available. A novel non-parametric deconvolution extrapolation scheme has been utilized to accurately forecast in situ
extreme environmental climate dynamics events. System’s quasi-stationarity was assumed; otherwise, for nonstationary
multidimensional dynamic systems with underlying multivariate trend, this trend has to be identified first, before the
advocated reliability methodology to be applied.
Distinct advantage of presented multivariate reliability methodology versus existing ones lies within its ability to
overcome “curse of dimensionality”, namely ability to treat systems with dimensionality above two.
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1. Introduction

Dynamic complexity and a wide range of random fac-

tors, impacting the dynamics of environmental systems,

may significantly impair their hazard prognostics (Gaidai

et al., 2022a, 2023b; Han et al., 2024b). Direct large-scale

Monte Carlo simulations (MCS) or substantial physical

measurements may be utilized to evaluate the risks and

reliability of spatiotemporal environmental systems, but

the costs of computing and measurements are prohibitive

in most cases, (Rice, 1944; Madsen et al., 1986; Gaidai et

©2025 The Author(s). This is the Open Access article distributed

under the terms of the Creative Commons Attribution Licence.

al., 2023c; Qin et al., 2024). To reduce both computational

as well as measurement expenses, the authors proposed

a novel multivariate reliability approach for both environ-

mental and structural systems risk/hazard assessment,

motivated by the aforementioned reasoning (Gaidai et al.,

2022b). The most common representation of ocean dy-

namics is a jointly piecewise-ergodic stochastic/random

process. The ocean provides surface smoothness, whereby

wind could easily circulate, as opposed to hills, moun-

tains, and forests, which usually block or prevent wind

along land. Given the alleged climate change process, it is

necessary to expand industrial uses for renewable wind-

wave power by exploiting an unexplored portion of the

globe’s energy assets, particularly in offshore and ocean
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Figure 1. Flow diagram for multidimensional reliability assessment.

locations. This case study advocates a pre-asymptotic

non-parametric extrapolation scheme, as opposed to com-

monly used EVT (Extreme Value Theory) extrapolation

techniques, e.g., Gumbel-type, Weibull-type, GP (General-

ized Pareto), POT (Peaks Over the Threshold), etc. (Glu-

khovskii, 1966; Haring et al., 1976; Zhang et al., 2006).

Analysis of unusual occurrences of ocean waves, known

as freak waves, has to be conducted, however, the number

of reliable measurements is still not representative (Jahns

andWheeler, 1973; Tayfun, 1980; TayfunandFedele, 2007).

For the dynamic coupling between wind and wave dynam-

ics, see Pierson and Marks (1952), Phillips (1957, 1958,

1985), Pierson and Moskowitz (1964), Stansell (2004),

Zhang et al. (2019). To minimize operational delays and

avoid potential damages towave energy converters and off-

shore wind turbines, multivariate generic spatiotemporal

structural reliabilitymethodshave recently been employed

to forecast the frequency and intensity of extreme wind-

speed and wave-height occurrences (Cook, 2023; Vega-

Bayo et al., 2023). One of the main merits of the multi-

variate Gaidai hazards assessment approach is its ability

to examine the reliability of multidimensional stochastic

environmental and structural systems with a virtually un-

limited number of components or dimensions.

Figure 1 presents a flowchart illustrating the advocated

long-term multimodal reliability methodology, which may

beappliedwithin various fields of environmental and struc-

tural engineering, particularly during the design stage. For

issues related to post-processing and uncertainty assess-

ment of measured meteorological data, see Ukhurebor et

al. (2020, 2021b), Ukhurebor and Aidonojie Nwankwo and

Ukhurebor (2021), Siloko et al. (2021).

Existing environmental and structural reliability meth-

ods, exceptMC-basedones, are limited to bivariate systems,

as there is no generalization of EVT to distributions be-

yond bivariate. Even for bivariate EVT applications, there

is reliance on an ad hoc copula assumption, introducing

additional inaccuracies. For the environmental contour

method, applied to structural reliability of coastal and ma-

rine structures, see Ross at al. (2020). For the recently

developed SPARmodel for bivariate extremeswith applica-

tion to metocean variables, see Mackay at al. (2024). Pop-

ular IFORM, ISORM, and hierarchical conditional models

are not only limited by 2D dimensionality, but also utilize

Rosenblatt transformation, which pre-assumes normality

of underlying distributions, which is rarely the case, see

Haghayeghi et al. (2018).

To summarize, the primary advantage of the presented

multivariate reliability methodology, compared to existing

ones, is that systems with dimensionality above two can

be treated, while existing reliability methods, except MC-

based, like First and Second Order Reliability Methods

(FORM, SORM, respectively), can treat only univariate and

bivariate systems.

2. Multivariate Gaidai risk assessment
approach for dynamic systems of the series

type

The spatiotemporal reliability of wind-wave systems is

often challenging to estimate using existing risk/hazard

assessment techniques. For the majority of complex dy-

namic environmental and structural systems, reliability

evaluation requires expensive either experimental or com-

putational MC (Monte Carlo) efforts. To reduce both mea-

surement and MCS computation costs, this study offers an

innovative multimodal approach to risk and hazard evalu-

ation for ocean wind-wave spatiotemporal systems. Short-

term windspeeds and wave heights may be described as a

dynamic MDOF (Multi-Degree-of-Freedom) system, con-

trolledby in-situ environmental covariates/variables. Let’s

assume the dynamic system to be jointly homogenous,

quasi-stationary, or piecewise ergodic with the system’s

primary 1D components (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡),…) bring either

MCSormeasuredover a representativeperiod (0,𝑇). Global

maxima of all of the system’s primary 1D components,

recorded across (0,𝑇), to be denoted as 𝑋max
𝑇 = max

0≤𝑡≤𝑇
𝑋(𝑡),

𝑌max
𝑇 = max

0≤𝑡≤𝑇
𝑌(𝑡), 𝑍max

𝑇 = max
0≤𝑡≤𝑇

𝑍(𝑡),… . The representa-

tive value of 𝑇 is defined as a large 𝑂(1) value wrt MDOF

system’s self-correlation and relaxation time-scales. Let

𝑋1,… ,𝑋𝑁𝑋 denote the local maxima of the 𝑋(𝑡) component,

recorded in temporally increasing instants: 𝑡𝑋1 <… < 𝑡𝑋𝑁𝑋 .

For the rest of the components 𝑌(𝑡), 𝑍(𝑡),… , their local

maxima 𝑌1,… ,𝑌𝑁𝑌; 𝑍1,… ,𝑍𝑁𝑍; … to be defined similarly.

Currently, the objective is to estimate the likelihood 𝑃𝐹 of

environmental/structural systems entering a hazard state.
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Figure 2. Synthetic vector ��⃗𝑅 composed of 2 components, 𝑋, 𝑌. Ellipse-marks simultaneous local maxima occurrence

originating from 𝑋, 𝑌 components (Gaidai at al., 2024z).

𝑃𝐹 ≡ 1−𝑃 =Prob(𝑋max
𝑇 > 𝜂𝑋 ∨𝑌

max
𝑇

> 𝜂𝑌 ∨𝑍
max
𝑇 > 𝜂𝑍 ∨…)

(1)

with

𝑃 =�
(𝜂𝑋, 𝜂𝑌, 𝜂𝑍, …)

(0, 0, 0,…)

𝑝𝑋max
𝑇 , 𝑌max

𝑇 , 𝑍max
𝑇 , …

×�𝑥max
𝑇 , 𝑦max

𝑇 , 𝑧max
𝑇 , …�𝑑𝑥max

𝑇

×𝑑𝑦max
𝑇 𝑑𝑧max

𝑇 …

(2)

holding component-wise critical/hazard thresholds/lev-

els 𝜂𝑋, 𝜂𝑌, … pre-defined per each system’s component,

forming merged damage/limit/hazard vector (𝜂𝑋, 𝜂𝑌, …),

∨ standing for logical unity-operator, 𝑝𝑋max
𝑇 , 𝑌max

𝑇 , 𝑍max
𝑇 , … in-

dicating the Joint Probability Density Function (JPDF) of

components’ global maxima. Direct assessment of high-

dimensional JPDF𝑝𝑋max
𝑇 , 𝑌max

𝑇 , 𝑍max
𝑇 , … is often impractical due

to high NDOF (Number Degrees of Freedom) and under-

lying dataset limitations. For series-type MDOF its fail-

ure/hazard is identified when any of its primary 1D com-

ponents enter hazard state, i.e., when 𝑋(𝑡) surpasses 𝜂𝑋 or

𝑌(𝑡) surpasses 𝜂𝑌, … . Each component’s global maxima

canbewritten indiscrete formas𝑋max
𝑁𝑋

=max�𝑋𝑗; 𝑗 = 1,…,

𝑁𝑋} =𝑋max
𝑇 , 𝑌max

𝑁𝑌
=max�𝑌𝑗; 𝑗 = 1,…, 𝑁𝑌� =𝑌max

𝑇 ,… . Com-

ponent’s local maxima incidence times �𝑡𝑋1 <⋯

< 𝑡𝑋𝑁𝑋; 𝑡
𝑌
1 <⋯< 𝑡𝑌𝑁𝑌; 𝑡

𝑍
1 <⋯< 𝑡𝑍𝑁𝑍� can be combined/

merged into a single vector 𝑡1 <⋯< 𝑡𝑁 preserving tempo-

rally monotonic order, holding 𝑡𝑁 =max�𝑡𝑋𝑁𝑋 , 𝑡
𝑌
𝑁𝑌
, 𝑡𝑍𝑁𝑍 ,…�,

𝑁 ≤𝑁𝑋+𝑁𝑌+𝑁𝑍+… . Therefore, 𝑡𝑗 denotes instant when

certain individual local maxima of one of the components

𝑋(𝑡), 𝑌(𝑡),… occurred. Next, ��⃗𝑅 = (𝑅1, 𝑅2,… , 𝑅𝑁) is de-

fined as a synthetic temporally increasing vector compo-

nent’s local maxima, having incidence times: 𝑡1 <⋯< 𝑡𝑁.

Figure 2 illustrates formation of the synthetic vector ��⃗𝑅

for the case of two 1D components 𝑋 and 𝑌 – in the case

when local maxima 𝑋𝑖, 𝑌𝑗 have occurred at the same time

instant 𝑡𝑙,𝑅𝑙 =max�𝑋𝑖, 𝑌𝑗�. Simultaneous reduction of fail-

ure/damage thresholds for each system’s component can

be carried out using a scaling parameter 0 < 𝜆 ≤ 1. Scaled

hazard/limit vector �𝜂𝜆𝑋, 𝜂
𝜆
𝑌,…� consists of 𝜂

𝜆
𝑗 , equal to ei-

ther 𝜂𝜆𝑋, 𝜂
𝜆
𝑌… , with 𝜂𝜆𝑋 ≡ 𝜆×𝜂𝑋 ≡ 𝜆×𝜂𝑌,… . The survival

probability will then be dependent on 𝜆 – i.e., 𝑃(𝜆), with
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target survival probability being 𝑃 ≡ 𝑃(1). Function 𝑃(𝜆)

is assumed to be a smooth/differentiable 𝐶1 function of 𝜆,

at least in the tail (𝜆 → 1)

𝑃(𝜆) =Prob�𝑅𝑁 ≤ 𝜂𝜆𝑁,… , 𝑅1 ≤ 𝜂𝜆1� =

=Prob�𝑅𝑁 ≤ 𝜂𝜆𝑁 � 𝑅𝑁−1 ≤ 𝜂𝜆𝑁−1,… , 𝑅1 ≤ 𝜂𝜆1 �

×Prob�𝑅𝑁−1 ≤ 𝜂𝜆𝑁−1, … , 𝑅1 ≤ 𝜂𝜆1� =

=

𝑁

�

𝑗=2

Prob�𝑅𝑗 ≤ 𝜂𝜆𝑗 � 𝑅𝑗−1 ≤ 𝜂𝜆𝑗−1, … , 𝑅1 ≤ 𝜂𝜆1 �

×Prob�𝑅1 ≤ 𝜂𝜆1�

(3)

When temporally neighboring 𝑅𝑗 is cross-correlated, Eq.

(3) can be improved by introducing a conditioningmemory

level 𝑘

Prob�𝑅𝑗 ≤ 𝜂𝜆𝑗 � 𝑅𝑗−1 ≤ 𝜂𝜆𝑗−1,… , 𝑅1 ≤ 𝜂𝜆1 � ≈

≈ Prob�𝑅𝑗 ≤ 𝜂𝜆𝑗 � 𝑅𝑗−1 ≤ 𝜂𝜆𝑗−1,… , 𝑅𝑗−𝑘 ≤ 𝜂𝜆𝑗−𝑘 �
(4)

with 𝑘 < 𝑗 ≤ 𝑁. The purpose of these memory approxi-

mations is to reduce the amount of intercorrelated local

excesses that cluster or cascade. MDOF system is assumed

to be quasi-stationary and jointly piecewise ergodic, then

probability functions 𝑝𝑘(𝜆)≔ Prob�𝑅𝑗 > 𝜂𝜆𝑗 �𝑅𝑗−1 ≤ 𝜂𝜆𝑗−1 ,

𝑅𝑗−𝑘+1 ≤ 𝜂𝜆𝑗−𝑘+1� for 𝑗 ≥ 𝑘will be independent of 𝑗 and de-

pendent only on the conditioning memory level 𝑘. Follow-

ing Poisson’s assumption, the system’s survival probability

can be expressed as

𝑃𝑘(𝜆) ≈ exp(−𝑁×𝑝𝑘(𝜆)), 𝑘 ≥ 1 (5)

holding 𝑁 ≫ 𝑘. A failure/hazard probability per design is

of a loworder ofmagnitude𝑜(1), thus, Eq. (5) is an obvious

consequence of Eq. (3), provided Prob(𝑅1 ≤ 𝜂𝜆1) ≈ 1.

For narrow-band dynamic systems, their component’s

local maxima, forming vector ��⃗𝑅 = (𝑅1, 𝑅2,… , 𝑅𝑁) display

clustering/cascadingpattern (Gaidai andXing, 2022; Gaidai

et al., 2022c,d,e; Gaidai 2024). Thus, the above-described

conditioningmemory level scheme canbe viewed as amod-

ification of the Poisson assumption (Gaidai et al., 2023f,g;

Sun et al., 2023a; Yakimov et al., 2023a,b).

2.1 Self-deconvolution extrapolation scheme
Let’s assume the existence of two Independent Identically

Distributed (I.I.D.) quasi-stationary processes𝑋1(𝑡), 𝑋2(𝑡),

such that their sum amounts to the underlying process of

interest 𝑋(𝑡)

𝑋(𝑡) = 𝑋1(𝑡)+𝑋2(𝑡) (6)

Target PDF 𝑝𝑋 is then 𝑝𝑋 = conv�𝑝𝑋1 , 𝑝𝑋2�, with 𝑝𝑋1 = 𝑝𝑋2
being PDFs of 𝑋1(𝑡), 𝑋2(𝑡). It is then possible to evaluate

PDF 𝑝𝑋1 using self-deconvolution

𝑝𝑋1 = deconv(𝑝𝑋) (7)

Let vector 𝑢 represent PDF 𝑝𝑋1 in discrete form, 𝑢 = (𝑢(1),

…, 𝑢(𝑛)), with 𝑛 = length(𝑢). The 𝑘-th element of vector

𝑤, representing PDF 𝑝𝑋, has length length(𝑤) = 2𝑛−1,

and

𝑤(𝑘) =

𝑛

�

𝑗=1

𝑢(𝑗)𝑣(𝑘−𝑗+1) (8)

having

𝑤(1) = 𝑢(1)×𝑢(1)

𝑤(2) = 𝑢(1)×𝑢(2)+𝑢(2)×𝑢(1)

𝑤(3) = 𝑢(1)×𝑢(3)+𝑢(2)×𝑢(2)+𝑢(3)×𝑢(1)

𝑤(𝑛) = 𝑢(1)×𝑢(𝑛)+𝑢(2)×𝑢(𝑛−1)+⋯+𝑢(𝑛)×𝑢(1)

𝑤(2𝑛−1) = 𝑢(𝑛)×𝑢(𝑛)

(9)

Eq. (9) provides deficient versions of𝑤 as the running in-

dexmoves from𝑛+1 to 2𝑛−1. As a result, vector𝑤 covers

double the original PDF support domain (2𝑛−1)×Δ𝑥 ≈

2𝑛×Δ𝑥 = 2𝑋𝐿, which means that the PDF support’s length

has doubled, compared with the original 𝑢 vector PDF’s

support length of 𝑛×Δ𝑥 = 𝑋𝐿, with Δ𝑥 representing PDF’s

binwidth. Startingwith the vector’s𝑢 first element, 𝑢(1)=

�𝑤(1), deconvolution moves on to the 2nd, 𝑢(2) =
𝑤(2)

2𝑢(1)
,

and finally reaches the final vector’s 𝑢 element, 𝑢(𝑛). The

extended range (𝑋𝐿, 2𝑋𝐿) can be covered by linear extrap-

olation of the PDF tail of 𝑝𝑋1 . Discrete/empirical PDFs

are not sufficiently 𝐶1 smooth/regular, necessitating the

smoothing of the PDF tail. 4-variables Weibull-type ex-

trapolation scheme was utilized for the extrapolation of

the PDF tail, provided the PDF tail is convex/concave. The

following 𝑓𝑋 may represent both PDF 𝑝𝑋 as well as sup-

plementary CDF (i.e., Cumulative Distribution Function),

namely CDF≡ 1−CDF. The subsequent scaling approach

was developed to avoid negative components within the

deconvoluted 𝑢 vector. First, let one define the least posi-

tive value 𝑓𝐿, present within the PDF/ CDF 𝑓𝑋 tail. Second,

scaling and linear correction are to be performed on the

decimal logarithmic scale

𝑔𝑋 = 𝜇�log
10
(𝑓𝑋)− log

10
(𝑓𝐿)�+ log

10
(𝑓𝐿) (10)

with 𝑔𝑋(𝑥) being log
10

– a scaled form of an empirical

PDF/ CDF 𝑓𝑋, provided a suitable scaling parameter 𝜇 < 1.
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Extrapolated PDF/ CDF distribution can be obtained via

convolution �𝑓𝑋 = conv�𝑓𝑋1 , 𝑓𝑋1�. To restore the original

distribution scale, inverse linear scaling following Eq. (10)

has to be carried out.

3. Results for the quadrivariate system
The efficiency of the spatiotemporal multivariate Gaidai

risks assessment approach is demonstrated in this section

by utilizing coherently measured wind speed and wave

heights, obtained fromNOAA buoys in the Bering Sea. Mea-

sured wind speeds and corresponding wave heights were

averaged over 10-minute periods. Wind-wave spatiotem-

poral dynamics is recognized as a multifaceted, extremely

nonlinear, cross-correlated dynamic system that is chal-

lenging to forecast. For marine and offshore structures

functioning in a designated offshore region of significance

and affected by extreme offshore conditions, an environ-

mental method risk/hazard evaluation is essential. For

this study, two NOAA offshore wind and wave observation

locations were selected:

I. Station 46035 (LLNR 1198) – CENTRAL BERING SEA

– 310 NM North of Adak, AK Owned and maintained

by National Data Buoy Center 57.034 N 177.468W

(57°2′1′′N 177°28′4′′W)

II. Station46072 (LLNR27510) –CENTRALALEUTIANS

230 NM SW Dutch Harbor Owned and maintained

by National Data Buoy Center 51.645 N 172.145W

(51°38’42′′N 172°8′42′′W)

Two stations yielded a 4D (quadrivariate) system 𝑋 =

(𝑋, 𝑌, 𝑊, 𝑍), consisting of synchronous measurements of

Figure 3. The circle indicates two chosen NOAA wind-

speed observation localities near the Bering Sea. Source:

(National Oceanic and Atmospheric Administration, NOAA

(2024)).

Figure 4. NOAA buoy. Source: (National Oceanic and

Atmospheric Administration, NOAA (2024)).

corresponding2windspeeds andwaveheights. Critical/haz-

ard thresholds/limits 𝜂𝑋, 𝜂𝑌,… for each of the four system

components had been set to be equal to respective global

maxima, recorded over the entire observational period,

i.e., 4 months between June and September 2024. Figure 3

displays theNorth Pacific NOAAbuoy stations, with a circle

marking the area of interest.

A NOAA data buoy with sensors to detect and acquire

meteorological data from the ocean is shown in Figure 4.

Collected data is converted into an electrical signal that

could be maintained within the outboard data module or

transferred to land. Technical specs of the 3-meter-high

NOAA buoy and positional characteristics of its sensor are

as follows:

I. The location’s altitude was measured in MSL (i.e.,

Mean Sea Level). The temperature of the atmosphere

was 3.4 meters above MSL.

II. The anemometer was 3.8 meters above MSL.

III. Barometer altitude: 2.4 meters above MSL.

All 4 measured wind-wave time-series had been non-di-

mensionalized resulting in uniform failure/hazard limits

all equal to 1. All component local maxima were merged

into synthetic vector ��⃗𝑅 = (max{𝑋1, 𝑌1, 𝑊1, 𝑍1} ,… ,

max{𝑋𝑁, 𝑌𝑁, 𝑊𝑁, 𝑍𝑁}). Figure 5 presents full-scale mea-

surements in the form of a 2D configuration space. Fig-

ure 6 illustrates a synthetic non-dimensional ��⃗𝑅 vector that

exhibits monthly fluctuations.

Figures 5 and 6 illustrate the process of coalescing dis-

tinct system’s inter-correlated components (windspeed

andwaveheight) into one synthetic nondimensional vector
��⃗𝑅. Deconvolution of the CDF tail was utilized to extrapo-

late the distribution tail towards the target/design hazard
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Figure 5. Full scale windspeed and wave-height data.

Figure 6. Nondimensional synthetic vector ��⃗𝑅.

probability level. Since the synthetic vector ��⃗𝑅 was com-

posed of entirely distinct components (i.e., windspeeds

and wave heights), it should be underlined that there is no

physicalmeaning in the vector ��⃗𝑅 itself. Each10th data point

obtained from «longer/full» windspeed and wave-height

dataset hadbeen retained to construct a «shorter/reduced»

dataset version. Based on the «shorter/reduced» dataset,

the forecasted hazard 𝜆-level, having a 1-year return pe-

riod, had been found to lie within the 95% CI (confidence

interval), predicted using «longer/full» windspeed and

wave height dataset. Figure 7 presents linear extrapola-

tion for the deconvoluted PDF 𝑝𝑋, see Eq. (7). Figure 8

presents the decimal log scale CDF 𝑓𝑋 tail extrapolating for

the «longer/full» dataset using a 4-parameter Weibull and

non-parametric deconvolution scheme.

Figures 7 and 8 illustrate the self-deconvolution extrap-

olation scheme in action, i.e., applied to a specific bivariate

windspeed and wave-height dataset. Note that extrapola-

tion is performed in 1D space, i.e., for synthetic nondimen-

sional vector ��⃗𝑅.

Figure 7. Linear extrapolation for PDF [(𝑝)]𝑋, see Eq. (7)

Figure 8. 4-parameter Weibull extrapolation (cyan), raw

dataset (red), and extrapolation by deconvolution scheme

(dark blue). 95% CIs indicated with 2 dashed lines.

Figure 8 illustrates the non-parametric deconvolution

scheme’s benefit over the 4-parameter Weibull-fit, as the

latter scheme predicts a less conservative hazard 𝜆 level.

The cut-on value 𝜆cut on = 0.5 had been selected in Figure 8

(Gaidai et al., 2023a,b,d,e,f; 2024e,i,k,u). Another key ben-

efit of the deconvolution extrapolation scheme lies within

its non-parametric nature, which assures increasing nu-

merical stability, compared with parametric extrapolation

schemes (Gaidai et al., 2024a,d,f).

The Poincare plot forms the basis for the widely used

SODP (Second-Order Difference Plot). SODP may under-

line intrinsic statistical dependencies contained within

consecutive differences, derived from raw/unfiltered data.

The underlying dataset’s pattern may be compared to

that of other relevant datasets, using the SODP plot, pre-

sented in Figure 9. Various AI (Artificial Intelligence) pat-

tern identification techniques can be applied, e.g., entropy

scheme (Yayık, 2019; Gaidai et al., 2024t). Other schemes

like MCP (Measure-Correlate-Predict) can be utilized to

gain additional insights into an underlying data structure

(Ishihara and Yamaguchi, 2015).
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Figure 9. SODP plot for raw measured windspeed and

wave-height data.

Note that the multivariate Gaidai risks evaluation ap-

proach is mathematically exact and thus may incorporate

any extrapolation scheme (Gaidai et al., 2024c,g,h,i,j,l; Han

et al., 2024a). Forecast errors may arise either from the

chosenextrapolation schemeor from theunderlyingdataset

itself (Gaidai et al., 2024a,m,o,p,q,r,s,t).

Note that separate correlation analysis is not required,

as all underlying multivariate data, along with intrinsic

component-wise correlations, were embedded into the

synthetic vector ��⃗𝑅 ≜ 𝑅(𝑡)without any data and informa-

tion loss. The de-clustering procedure, given by Eq. (3)

ensures that temporal and component-wise correlations

are accounted for.

4. Discussion
The practical advantages of the suggested generic multi-

modal Gaidai risk evaluation approach are briefly outlined

in Table 1. In summary, the multimodal Gaidai risk assess-

ment approach allows for virtually infinite NDOF, whereas

existing reliability techniques are mostly restricted to 1D

and 2D dynamic systems. Another distinct advantage of

the proposed reliabilitymethod lies in its ability to account

for memory effects and performmultivariate data declus-

tering.

The system’s joint quasi-stationarity assumption may

be viewed as a constraint on the proposed multivariate

reliability strategy. However, in cases when the underly-

ing multivariate trend can be identified and forecasted,

the multimodal Gaidai hazard assessment methodology

can well be applied, provided damage/limit/hazard vector

𝜂 = (𝜂𝑋, 𝜂𝑌,…) is made time-dependent, i.e., 𝜂(𝑡), (Gaidai,

2025a,b).

Non-parametric self-deconvolution scheme has an ad-

vantageoverparametric schemes, as it possesses increased

numerical stability,moreover, it does not rely on the asymp-

totic EVT assumption. In this case study non-parametric

Table 1. Characteristics of the multimodal Gaidai risk

analysis approach.

Multimodal Gaidai

hazard assessment

method

The present tech-

niques for evaluat-

ing risk in univari-

ate or bivariate

Multivariate nonlin-

ear wind-wave sys-

tem analysis

NDOF =∞D NDOF ≤ 2D

Possibility of incor-

porating wind-wave

system trends

Full Partial-to-full

Extrapolation

scheme

Non-parametric Parametric

self-deconvolution scheme had been utilized, however, any

suitable extrapolation scheme can be plugged in.

5. Conclusions
Thepresented case studybenchmarkedanovelmultimodal

Gaidai reliability approach, utilizing a rawwind-wave data-

set, measured in the Bering Sea. In situ climate dynamics

was modelled as a quadrivariate dynamic system. The

primary benefit of the suggested multimodal reliability

approach lies in its capacity to forecast risks of natural

hazards related to multivariate environmental and struc-

tural systems. Windspeeds and wave heights, measured

by NOAA buoys in the Bering Sea in the year 2024 been an-

alyzed. Two distinct extrapolation schemes were utilized,

namely, parametric Weibull and non-parametric decon-

volution, resulting in environmental wind-wave system

hazard risk assessment. The proposed multimodal Gaidai

reliability approach’s theoretical basis has been thoroughly

explained. The development of accurate, conservative, yet

reliable natural hazard prognostic methods that can utilize

even limited underlying raw datasets is necessary for the

design of offshore, ocean, and marine structures. The pre-

sented case study’s primary objective was to demonstrate

the efficiency of the state-of-the-art, generic spatiotempo-

ral reliability approach to climate dynamics. Hazard risks

of a wide range of environmental and structural systems

can be analyzedwith the help of the advocatedmultimodal

Gaidai reliability approach, as it is of a generic nature and

is not restricted by the presented wind-wave dynamics

case study.

As this is an illustrative case study, it aims to demon-

strate the capabilities of the novel multivariate reliabil-

ity method. Extensive references are provided, covering

a wider range of applications of the advocated novel re-

liability methodology. Other geographical locations can

be added, however, then this case study will not be con-

strained to the Bering Sea area of interest only. Authors

have chosen the latest measured data from the year 2024

to provide the latest, up-to-date analysis, as utilizing previ-

ous years would introduce annual trend-related bias. As
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was previously mentioned, in case of the underlying trend,

it has to be identified first, however, trend forecast was not

covered in this case study.
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