

Chlorophyll α distribution in the Arabian Gulf: climate, trends, and global teleconnections

Cheriyeri Poyil Abdulla¹, Valliyil Mohammed Aboobacker^{1*}, Muhammad Shafeeque², Ponnumony Vethamony¹

Abstract

The study examined the climatology, trends, and variability of chlorophyll α (hereafter referred to as 'Chl α ') concentration in the Arabian Gulf (hereafter referred to as 'Gulf'), utilizing merged satellite datasets for the period 1998–2022. Distinct spatial and temporal variabilities were identified, which are linked to climatic features, inflow from the Arabian Sea, freshwater discharge into the Gulf, and the Gulf circulation. The study identified an opposing phase in the dominance of Chl α between the southern Iranian coast and the Arabian coast. Among wind speed, sea level anomaly, and sea surface temperature (SST), multiple linear regression analysis revealed SST as the strongest predictor of phytoplankton growth. The La Niña and positive Indian Ocean dipole (IOD) phases enhanced the Chl α , while El Niño and negative IOD phases caused its decline. The Chl α increased in the northern coast and southern shelf of the Gulf, of the order of 0.017–0.031 mg/m³/y, while the southern Iranian coast exhibited weaker negative trends.

Keywords

Arabian Gulf; GlobColour; Chlorophyll α ; Primary productivity; Gulf circulation; Climatic indices

¹Environmental Science Center, Qatar University, P.O. Box. 2713, Doha, Qatar

²Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

*Correspondence: vmaboobacker@qu.edu.qa (V. M. Aboobacker)

Received: 20 March 2025; revised: 9 November 2025; accepted: 17 November 2025

1. Introduction

Chlorophyll α (Chl α) serves as a vital pigment in photosynthetic organisms, reflecting their abundance and primary productivity levels in aquatic environments (Behrenfeld and Falkowski, 1997). Remote sensing-based Chl α concentration data play a crucial role in monitoring and understanding marine ecosystems (Shafeeque et al., 2021a). These observations provide valuable insights into phytoplankton dynamics, primary productivity, and ecosystem health, which benefit studying climate change impacts, assessing oceanic biogeochemical processes, identifying phytoplankton blooms, detecting harmful algal events, and measuring the impact of environmental stressors on marine environments (Al-Naimi et al., 2017). Satellite remote sensing methods have provided unprecedented global insights into Chl α spatial and temporal distribution (Vantretotte and Mélin, 2009; Westberry et al., 2023; Xi et al., 2020). Studies have elucidated the role of climatic phenomena, including El Niño and La Niña events, in driving significant global variations in Chl α , affecting phytoplank-

ton productivity patterns across different oceanic regions (Currie et al., 2013; Shafeeque et al., 2021b). Additionally, research has indicated that global warming trends could be altering ocean stratification, potentially leading to decreased nutrient upwelling and thus influencing global Chl α (Gao et al., 2018).

The Arabian Gulf (hereafter 'Gulf') is one of the most biologically and geologically distinct marine environments in the world (Price et al., 1993; Ross et al., 1986; Sheppard et al., 2010). Geographically, the Gulf is bordered by Saudi Arabia, Kuwait, Iraq, Iran, Qatar, the United Arab Emirates, and Oman. The Gulf is an important body of water for international trade and energy resources and has geopolitical significance in the region. Its uniqueness, including semi-enclosed nature, extreme salinity levels, high-temperature variations, and limited freshwater input, makes it an important region for studying marine processes under extreme conditions. The Gulf's waters support diverse and economically important marine ecosystems, including coral reefs, seagrass beds, and fisheries, which are under increasing stress due to anthropogenic activities and climate change (Keshavarzifard et al., 2021; Vaughan et al., 2019). The Gulf experiences extreme conditions with a hot and arid

44 climate, excess evaporation over precipitation, elevated
45 temperatures, and high salinity levels (Aboobacker et al.,
46 2024a; Al-Ansari et al., 2022; Elobaid et al., 2022; Rakib et
47 al., 2021; Reynolds, 1993), which significantly influence
48 phytoplankton community structure and productivity (Al-
49 Said et al., 2017; Polikarpov et al., 2016; Rao and Al-Yamani,
50 1998). The estimated residence time of the Gulf water is
51 3–5 years with an inflow of 2696 km³/y and an outflow of
52 2375 km³/y (Reynolds, 1993). The circulation is mainly
53 driven by winds, density gradients, and the water exchange
54 with the Indian Ocean that occurs through the Strait of
55 Hormuz (Kämpf and Sadrinasab, 2006; Mussa et al., 2024;
56 Thoppil and Hogan, 2010). The major components of sur-
57 face circulations are the northwestward-flowing Iranian
58 Coastal Current (ICC) and the southeastward-flowing Ara-
59 bian Coastal Current (ACC), while the density-driven deep
60 currents flow towards the southeast from the northern
61 Gulf to the Sea of Oman through the Strait of Hormuz.

62 The variability of Chl *a* in the Gulf is characterized by
63 unique hydrographic, geomorphological, and ecological
64 conditions. In addition, anthropogenic effects may result in
65 high levels of Chl *a* and lead to eutrophication in Gulf coasts
66 (Al-Yamani et al., 2020; Devlin et al., 2019). In Kuwait wa-
67 ters, Chl *a* was analyzed using in situ observations and
68 discussed the local seasonal variations and the impact of
69 anthropogenic activities (Al-Yamani et al., 2020). Al-Thani
70 et al. (2023) evaluated the physical parameters that con-
71 trol the Chl *a* distribution in the Exclusive Economic Zone
72 (EEZ) of Qatar and analyzed the spatio-temporal variability
73 using in situ measurements from various transects. Ne-
74 zlin et al. (2010) utilized SeaWiFS data (1996–2009) and
75 reported that Chl *a* levels in the Gulf are significantly influ-
76 enced by local meteorological and oceanographic factors,
77 including vertical stratification, precipitation, and aeolian
78 dust transport. Similarly, Moradi (2020) and Bordbar et al.
79 (2024) utilized MODIS data and reported that sea surface
80 temperature (SST) and winds influence Chl *a* variability in
81 the Gulf. Given the Gulf's strategic importance as a global
82 oil hub and its proximity to densely populated coastal re-
83 gions, a detailed understanding of the patterns and drivers
84 of Chl *a* distribution is essential for predicting and miti-
85 gating the impacts of human activities on marine ecosys-
86 tems. Our research leveraged the longest available satellite
87 dataset of Chl *a* for the Gulf to conduct a detailed investi-
88 gation of the spatiotemporal distribution of Chl *a* in the
89 Gulf. The study also discussed the relationships between
90 observed Chl *a* distribution and global climate oscillations.
91 This study enhances the temporal resolution and spatial
92 coverage of the analysis, providing a more comprehensive
93 understanding of Chl *a* dynamics over an extended period.

94 To quantify the impact of various environmental pa-
95 rameters on Chl *a*, this study employs multiple linear re-
96 gression analysis, a sophisticated statistical technique that
97 allows for the examination of the relationship between mul-
98 tiple independent variables and the dependent variable

99 (Chl *a*). To understand the potential influence of global cli-
100 matic oscillations on the observed Chl *a* pattern, we have
101 investigated the impact of El Niño-Southern Oscillation
102 (ENSO), Indian Ocean Dipole (IOD), and North Atlantic
103 Oscillation (NAO). These events are known for impacting
104 many of the marine ecosystems of the World Ocean (Currie
105 et al., 2013; Racault et al., 2017; Shafeeqe et al., 2021b)
106 and have influenced the Gulf ecosystem by altering SST,
107 wind patterns, nutrient upwelling, etc., which in turn in-
108 fluence Chl *a* (Aboobacker et al., 2021b; Al Senafi, 2022;
109 Al-Subhi and Abdulla, 2021; Niranjan Kumar and Ouarda,
110 2014). The sections in this paper are arranged as follows:
111 Section 2 describes the study area and its features; the ma-
112 terial and methods are described in Section 3, results are
113 discussed in Section 4, and the findings are summarized
114 in the final section.

2. Study area

115 The Gulf, situated between 47.5°E–56.5°E and 23.5°N–
116 30.5°N, encompasses an area of approximately 241,000
117 km². This semi-enclosed marginal sea of the Indian Ocean
118 stretches about 1,000 km in length, with its width varying
119 from 56 km at its narrowest point in the Strait of Hormuz
120 to 338 km at its widest. The Gulf is characterized
121 by its shallow nature, with an average depth of 36 m, al-
122 though it reaches a maximum depth of 110 m in the Strait
123 of Hormuz. The Gulf's bathymetry features a southward
124 widening channel that extends from the Strait of Hormuz
125 across a series of sills and shallow basins to the shelf edge
126 (Elobaid et al., 2022; Kämpf and Sadrinasab, 2006). Tectonic-
127 driven subsidence has resulted in a deeper seafloor on the
128 southern part of the Strait, forming a 70–95 m deep trough
129 along the Iranian coast in the eastern part of the Gulf. This
130 asymmetry is further emphasized by the presence of a shal-
131 low bank area (depth < 20 m) in the southwestern Gulf,
132 contrasting with a deeper area in the Iranian waters. The
133 narrow Strait of Hormuz plays a crucial role in restricting
134 water exchange between the Gulf and the northern Indian
135 Ocean.

136 The region experiences distinctive wind patterns, with
137 the northwesterly Shamal being the dominant wind sys-
138 tem. Other significant wind types include the northeasterly/easterly Nashi winds and the southeasterly/southerly
139 Kaus winds (Aboobacker et al., 2021a). The Gulf's surface
140 circulation is dominated by ICC and ACC, with the ICC ex-
141 hibiting relatively stronger flows compared to the ACC.
142 Seasonal variations in current speeds are evident, with
143 summer currents generally stronger than winter currents.
144 The Gulf experiences its strongest currents during May and
145 June. Additionally, prominent eddies are observed in both
146 winter and summer seasons, contributing to the complex
147 circulation patterns within the Gulf (Mussa et al., 2024).

148 The primary freshwater input comes from the Shatt-Al-
149 Arab river system in the north, fed by the Euphrates, Tigris,
150 and Karun rivers. Historically, the annual mean discharge

of the Shatt-Al-Arab was between $35 \text{ km}^3/\text{y}$ (Johns et al., 2003; Saad, 1978) to $45 \text{ km}^3/\text{y}$ (Wright, 1974). However, this discharge has been substantially reduced over the years due to extensive dam construction upstream. More recent measurements indicate a discharge of $40\text{--}70 \text{ m}^3/\text{s}$ (Alosairi and Pokavanich, 2017), which is equivalent to approximately $1.26\text{--}2.21 \text{ km}^3/\text{y}$. A key hydrological characteristic of the Gulf is its high evaporation rate, estimated at approximately 2 m/y per unit surface area (Ahmad and Sultan, 1991; Privett, 1959), which significantly exceeds both precipitation and river discharge (Johns et al., 2003). The Gulf's unique hydrodynamics are characterized by a reverse estuarine circulation, primarily driven by excessive evaporation. This circulation pattern results in a dense bottom outflow that follows the southern coastline, while an inflow of Indian Ocean Surface Water (IOSW) moves along the Iranian coastline (Johns et al., 2003; Reynolds, 1993). The geographical location of the study area is shown in Figure 1. For a detailed analysis of variability in the Gulf, we have selected five locations as shown in Figure 1. The selected locations (P1–P5) were chosen to be representative of the major coastal regions and Chl *a* dynamics within the Gulf. P1 represents the northern Gulf and the region of Shatt Al-Arab river discharge; P2 and P3 represent the Arabian coast of the Gulf; P4 and P5 represent the Iranian coast of the Gulf. By including these locations, we aimed to capture the major spatial patterns and drivers of Chl *a* variability across the Gulf. As indicated, the selection was based on examining the climatology of annual mean and

seasonal mean Chl *a*, the variations are assessed and based on these results, the stations are selected for detailed discussion, in such a way that the stations cover the general features of Iranian and Arabian coasts.

3. Data and methods

3.1 Data

3.1.1 Chlorophyll *a*

This study utilizes the GlobColour Chl *a* concentrations obtained from the Copernicus Marine Environment Monitoring Service (CMEMS) database, with the product ID: https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104/services (last accessed on 1 December 2024; https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104/services; DOI: <https://doi.org/10.48670/moi-00281>). This is a composite product derived from the integration of multiple satellite sensors, including SeaWiFS, MODIS, MERIS, VIIRS-SNPP&JPSS1, and OLCI-S3A&S3B (Veny et al., 2024). By merging data from these various sensors, the product ensures a high level of accuracy and consistency in the Chl *a* measurement. The dataset features a fine spatial resolution of $0.04^\circ \times 0.04^\circ$, which allows for detailed mapping of Chl *a* in the Gulf. Moreover, the dataset was updated daily, providing a temporal resolution that supports continuous monitoring and analysis of oceanographic conditions. For this study, monthly Chl *a* concentrations were extracted for the period 1998–2022.

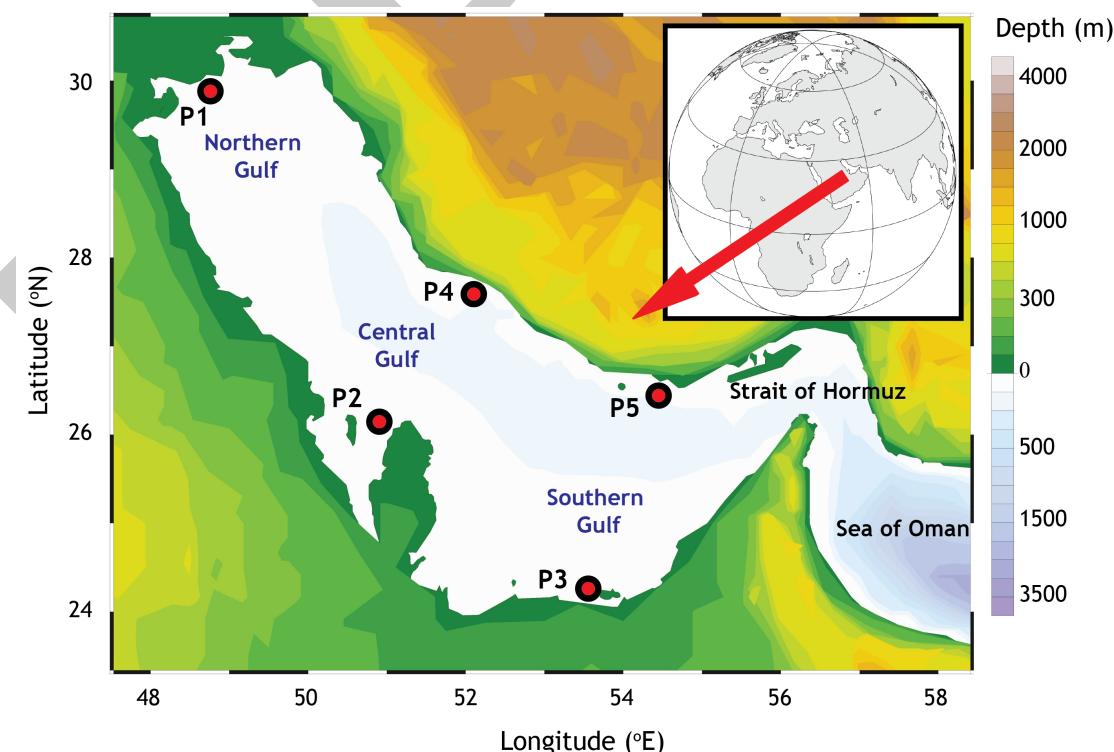


Figure 1. Study area. The selected stations for time series analysis are marked with red dots.

209 **3.1.2 Wind**

210 ERA5, the fifth generation of global climate and weather
 211 reanalysis produced by the European Centre for Medium-
 212 Range Weather Forecasts (ECMWF), offers a comprehen-
 213 sive dataset that spans from 1940 to the present, providing
 214 extensive temporal coverage for climate and weather re-
 215 search (Hersbach et al., 2020). ERA5 winds are available
 216 at a horizontal resolution of $0.25^\circ \times 0.25^\circ$ and for temporal
 217 resolutions of hourly, daily, and monthly, offering detailed
 218 spatial and temporal insights into wind patterns. In this
 219 study, we downloaded the monthly winds in the Gulf for the
 220 period 1998–2022 (<https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview>; last accessed on 1 December 2024). This data
 221 has been used to delineate its role on the Chl *a* distribution
 222 in the Gulf. Earlier, ERA5 winds along the coast of Qatar
 223 were verified and utilized for the wind energy resource
 224 assessment (Aboobacker et al., 2021b). Additionally, ERA5
 225 winds were validated in the Gulf against the observations
 226 from the oceanographic buoys (Mahmoodi et al., 2019).
 227

228 **3.1.3 Sea Surface Temperature**

229 SST datasets employed in this study were derived from
 230 the Advanced Very High-Resolution Radiometer (AVHRR)
 231 Pathfinder Version 5, available from NASA's Physical
 232 Oceanography Distributed Active Archive Center (PO.DAAC).
 233 AVHRR, a space-borne sensor, has been instrumental in
 234 measuring SST by detecting thermal infrared radiation
 235 emitted by the ocean surface. This technique allows for
 236 accurate and reliable temperature measurements, essen-
 237 tial for understanding various oceanographic and climatic
 238 processes (<https://podaac.jpl.nasa.gov/dataset/>, last
 239 accessed on 1 December 2024; Saha et al., 2018). The
 240 Pathfinder SST provides daily daytime observations at
 241 a high horizontal resolution of $0.04^\circ \times 0.04^\circ$, enabling de-
 242 tailed spatial analysis of sea surface temperature variations
 243 across the globe. The AVHRR Pathfinder SST dataset offers
 244 continuous temporal coverage, which is crucial for moni-
 245 toring both short-term and long-term changes in SST. This
 246 dataset is particularly valuable for its consistency and accu-
 247 racy, achieved through rigorous calibration and validation
 248 processes. The AVHRR SST data are available from 1981
 249 to the present, from daily to monthly time scales. In this
 250 study, we used the monthly AVHRR SST during 1998–2022
 251 to analyze how SST variations within the Gulf affect the
 252 Chl *a* change.
 253

254 **3.1.4 Sea Level Anomaly**

255 Sea Level Anomaly (SLA) datasets utilized in this study
 256 were sourced from AVISO (Archiving, Validation, and In-
 257 terpretation of Satellite Oceanographic data) through the
 258 Copernicus Marine Environment Monitoring Services
 259 (CMEMS). The product (ID: [SEALEVEL_GLO_PHY_L4_MY_008_047](https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/services)) provides high-quality SLAs derived from multiple
 260 altimeter missions, including TOPEX/Poseidon, Jason-1,
 261 Jason-2, Jason-3, Envisat, ERS-1, ERS-2, and SARAL/AltiKa,
 262

263 among others (https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/services;
 264 Chinta et al., 2024). It is crucial for understanding sea level
 265 variations and their implications. The data is for a horizon-
 266 tal resolution of $0.25^\circ \times 0.25^\circ$ and a temporal resolution
 267 of daily and monthly from 1993 to the present. We used
 268 monthly SLA during 1998–2022 to understand the role of
 269 SLA on Chl *a* within the Gulf (last accessed on 1 December
 270 2024).
 271

272 **3.2 Methods**273 **3.2.1 Multiple linear regression**

274 Multiple linear regression analysis was carried out with
 275 Chl *a* as the dependent variable, and SST, SLA, and wind
 276 speed as independent variables. We used box-averaged
 277 data for all the selected point locations. This analysis eval-
 278 uates how multiple independent variables influence a de-
 279 pendent variable simultaneously. It quantifies the individ-
 280 ual impact of each independent variable on the dependent
 281 variable while controlling for the effects of other variables
 282 included in the model, as represented in Equation (1).
 283

$$284 y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i, \quad i = 1, 2, \dots, n \quad (1)$$

285 where $\beta_0, \beta_1, \beta_2$ represents the random error, allowing
 286 each response to deviate from the average value of y . These
 287 errors are presumed to be independent, with a mean of
 288 zero and a common variance (σ^2) and follow a normal
 289 distribution.
 290

291 **3.2.2 Long-term linear trend**

292 The trend analysis and significance test of the observed
 293 trends were conducted using Sen's slope estimator (Sen,
 294 1968) and the Mann-Kendall test (Kendall, 1975), respec-
 295 tively. These statistical methods are robust and widely
 296 used in environmental and climatic studies to identify and
 297 quantify trends in time series data. Sen's slope estimator
 298 is a non-parametric method used to determine the magni-
 299 tude of a trend. Sen's slope is calculated as the median of
 300 the slopes of all possible pairs of data points, providing a re-
 301 liable estimate of the true slope of the trend (Sen, 1968).
 302 The Mann-Kendall test is a non-parametric test used to
 303 assess the significance of a trend in a time series. This test
 304 evaluates the null hypothesis that there is no trend against
 305 the alternative hypothesis that a trend exists. It is based
 306 on the ranks of the data rather than the actual values, mak-
 307 ing it robust against non-normal distributions and missing
 308 values (Kendall, 1975).
 309

310 **3.2.3 Composite analysis**

311 To examine the typical Chl *a* response to specific climate
 312 events, we performed a composite analysis. For each cli-
 313 mate index (ENSO, IOD, and NAO), we first identified years
 314 corresponding to specific phases (e.g., El Niño, La Niña, pos-
 315 itive IOD, negative IOD, positive NAO, and negative NAO).
 316 Then, for each event phase, we extracted the annual mean
 317

Table 1. Coordinates of the sampling stations.

Station	Latitude	Longitude
S0	25.299°N	51.521°E
S1	25.310°N	51.542°E
S2	25.350°N	51.554°E
S3	25.320°N	51.583°E
S4	25.322°N	51.627°E
S5	25.283°N	51.646°E
S6	25.321°N	51.676°E
S7	25.294°N	51.708°E
S8	25.408°N	51.645°E
S9	25.383°N	51.570°E
S10	25.435°N	51.563°E

313 Chl *a* values for the Gulf during those years and calculated
 314 the composite mean. This involved averaging the annual
 315 mean Chl *a* values across all years identified for that spe-
 316 cific event phase. By aggregating data from multiple years
 317 of the same event, the composite analysis aims to reduce
 318 the influence of interannual variability and highlight the
 319 characteristic spatial and temporal patterns in Chl *a* asso-
 320 ciated with each climate mode, which might be unnoticed
 321 while analyzing individual years.

322 For the data analysis and visualization presented in this
 323 paper, the following software and tools were employed:
 324 FERRET (Hankin et al., 1996), CDO (Schulzweida, 2023), R
 325 (R Core Team, 2023), and MATLAB (The MathWorks Inc.,
 326 2024).

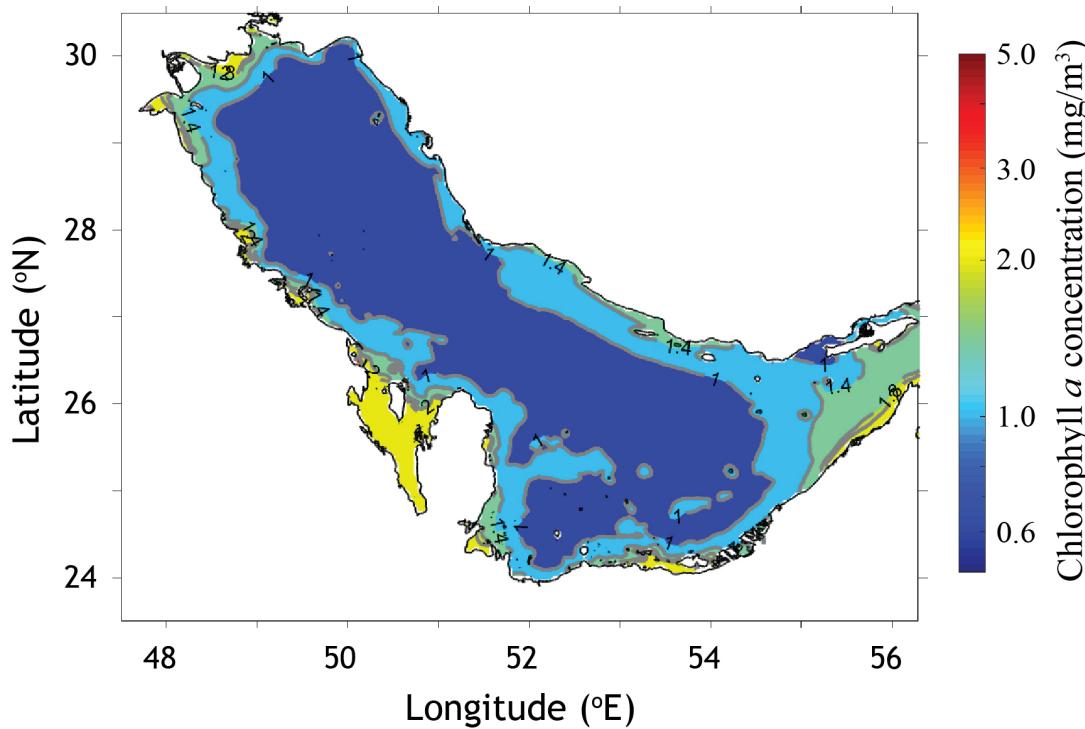
4. Results and discussion

4.1 Verification of GlobColour Chl *a*

327 The GlobColour project employs a comprehensive valida-
 328 tion approach, comparing merged sensor products with
 329 in situ measurements to assess their accuracy and con-
 330 sistency (Garnesson et al., 2025). The global 4 km Glob-
 331 Colour product demonstrates a good relationship between
 332 satellite-derived Chl *a* and in situ measurements, with a co-
 333 efficient of determination (R^2) of 0.75 for daily data. The
 334 cloud-free (interpolated) product shows a slight degrada-
 335 tion but still achieves an R^2 of 0.71 (Garnesson et al., 2025,
 336 see Table 3). These statistics, based on many available in
 337 situ measurements, demonstrate the quality of the Glob-
 338 Colour product for a wide range of applications (Garnesson
 339 et al., 2025). The utility of GlobColour data for studying
 340 Chl *a* and primary productivity is well-established, with
 341 applications spanning diverse ocean basins and including
 342 studies of the adjacent Mediterranean Sea, demonstrating
 343 its relevance to the Gulf (El Hourany et al., 2019; Ford and
 344 Barciela, 2017; Ford et al., 2012; Maritorena et al., 2010;
 345 Pramlall et al., 2023; Pitarch et al., 2016; Yu et al., 2023).

346 The accuracy of GlobColour Chl *a* data within the Qatar
 347 waters has been verified against available in situ data col-
 348 lected using CTD at 11 stations, encompassing both coastal

349 and offshore areas of Doha (as detailed in Table 1). Data
 350 from December 2021, June 2022, and March 2023, were
 351 used for comparison. The findings, summarized in
 352 Table 2 indicate that GlobColour Chl *a* values align rea-
 353 sonably well with in situ measurements, although there
 354 is a slight overestimation at lower concentrations. For in-
 355 stance, in December, the mean (maximum) Chl *a* recorded
 356 by GlobColour was 1.18 mg/m³ (1.65 mg/m³), while in situ
 357 measurements were slightly lower at 1.15 mg/m³ (1.88
 358 mg/m³). Nonetheless, the limitations in the availability
 359 of in situ data in the Gulf lack a comprehensive overview
 360 of the validation of CMEMS Chl *a* data. However, this data
 361 has been validated against in situ measurements in other
 362 areas quite satisfactorily (Amorim et al., 2024; Garnesson
 363 et al., 2019; Moradi, 2021; Volpe et al., 2019).


364 Several studies have successfully utilized satellite data-
 365 sets to analyze Chl *a* variability in the Gulf. For instance, Ne-
 366 zlin et al. (2010) employed MODIS and SeaWiFS datasets,
 367 demonstrating their usefulness in assessing regional Chl *a*
 368 patterns. Moradi and Kabiri (2015) further explored MODIS
 369 data, corroborating its effectiveness in capturing Chl *a* dy-
 370 namics. Alosairi et al. (2019) expanded on these find-
 371 ings by incorporating both MODIS and VIIRS data, pro-
 372 viding a comprehensive view of Chl *a* variability. Simi-
 373 larly, the utilization of MODIS data has been noted by other
 374 researchers, also highlighting its widespread acceptance
 375 and effectiveness in monitoring Gulf waters (Hussein et al.,
 376 2021; Moradi and Moradi, 2020). These studies confirm
 377 the reliability of satellite-derived Chl *a* data, supporting its
 378 application in understanding and managing marine ecosys-
 379 tems in the Gulf despite the limited in situ measurements
 380 available for direct validation.

4.2 Annual mean Chl *a* features

381 Analysis of annual mean Chl *a* in the Gulf reveals notable
 382 spatial variations. The annual mean Chl *a* along the north-
 383 ern Iranian coast is relatively lower than that along the
 384 Arabian coast (Figure 2). In the nearshore of the northern
 385 Iranian coast, the Chl *a* is 1 to 1.5 mg/m³, suggesting lesser
 386 nutrient input from the surrounding areas or different hy-
 387 drodynamic conditions that affect nutrient distribution
 388 and phytoplankton activity. The spatial average of annual
 389 mean Chl *a* over the Gulf is 1.1 mg/m³. About 56% of the
 390 Gulf, encompassing mostly offshore waters, has an annual
 391 mean Chl *a* of less than 1 mg/m³, whereas 38% of the re-
 392 gion has a concentration between 1 to 2 mg/m³, and 5%
 393 between 2 to 3 mg/m³. A strong nearshore-offshore gra-
 394 dient in Chl *a* is identified along the coastal regions. This
 395 pattern is particularly pronounced along the Arabian coast,
 396 where the Chl *a* is reduced from 2 mg/m³ in the nearshore
 397 to less than 1 mg/m³ in the offshore. Such decrements
 398 are quite common and are influenced by various factors,
 399 including the processes that make nutrients available in
 400 the surface layer, which fosters phytoplankton intensity
 401 close to the coast (Anjaneyan et al., 2023; Dai et al., 2023;

Table 2. The GlobColour observations of Chl *a* against in situ data.

Date	GlobColour		in situ	
	Range (mg/m ³)	Mean (mg/m ³)	Range (mg/m ³)	Mean (mg/m ³)
7 December 2021	0.96–1.65	1.18	0.17–1.88	1.15
2 June 2022	0.88–2.76	1.55	0.17–3.22	1.11
2 March 2023	0.54–1.74	0.83	0.33–1.56	0.91

Figure 2. Annual mean Chl *a* for the period 1998–2022.

405 Kim et al., 2009).

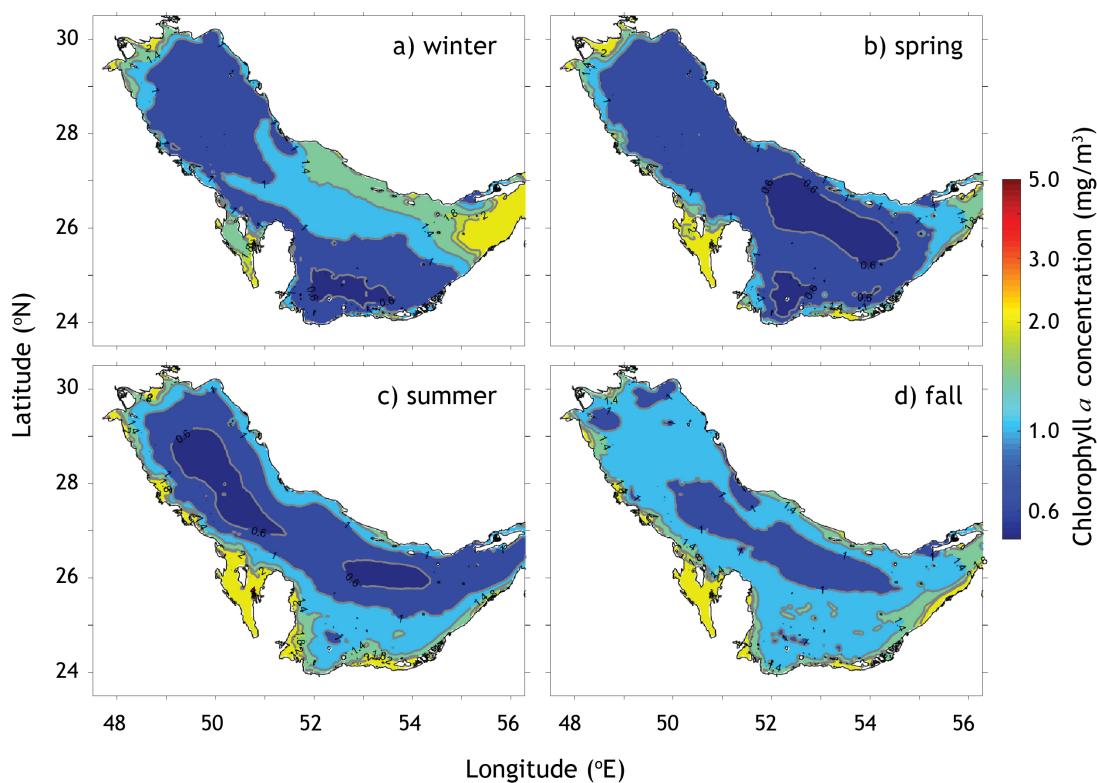
406 In the north, the higher annual mean Chl *a* concentrations
 407 are observed near the Shatt al-Arab river plume
 408 ($> 2.0 \text{ mg/m}^3$). Here, the Euphrates, Tigris, and Karun
 409 rivers discharge nutrient-rich waters and promote phyto-
 410 plankton growth. The Iranian Bay also exhibits high Chl *a*
 411 concentration, reflecting favorable conditions for phyto-
 412 plankton. Notable Chl *a* concentrations are found in Kuwait
 413 Bay, of the order of 2.0 mg/m^3 (Devlin et al., 2019; Heil et
 414 al., 2001). The Shatt Al-Arab estuarine waters in the north
 415 are characterized by high biomass and nutrient-rich con-
 416 ditions, leading to higher productivity but lower species
 417 diversity compared to adjacent areas, while Kuwaiti waters
 418 demonstrate higher species diversity but lower biomass
 419 and production than the Shatt Al-Arab region (Rao and Al
 420 Yamani, 1998). Recent studies have attributed changes in
 421 the Gulf's phytoplankton community to nutrient increases
 422 (Devlin et al., 2015) and salinity-related fluctuations, par-
 423 ticularly in the Northern Gulf region (Al-Said et al., 2017),
 424 playing a crucial role in driving the elevated Chl *a* levels

425 and primary productivity observed in the northern Gulf.

426 The Gulf of Salwa, which shares its coast with Qatar,
 427 Bahrain, and Saudi Arabia highlights a remarkable Chl *a*
 428 concentration of around 2.0 mg/m^3 . The east coast of
 429 Qatar exhibits moderate Chl *a* concentrations, in the range
 430 of $1.0\text{--}1.5 \text{ mg/m}^3$ and higher, which is consistent with the
 431 earlier studies (Al-Naimi et al., 2017; Al-Thani et al., 2023;
 432 Rajendran et al., 2022). Along the Iranian coast, the Chl *a* is
 433 relatively higher in the southern part, adjacent to the Strait
 434 of Hormuz. A decrement in Chl *a* patterns is also visible
 435 from the Strait of Hormuz towards the central Gulf. This is
 436 aligned with the pattern of the nutrient-rich water inflow
 437 from the Arabian Sea (Mussa et al., 2024; Ismail and Al
 438 Shehhi, 2022). The deeper regions of the Gulf with limited
 439 nutrient supply to the euphotic zone exhibit significantly
 440 lower Chl *a* concentration, emphasizing the importance
 441 of coastal processes in supporting higher productivity in
 442 the nearshore waters. However, certain regions along the
 443 coast, especially where the discharge of brine is promi-
 444 nent (for instance, the Jubail coast of Saudi Arabia), exhibit

445 lower Chl *a* concentration compared to the adjacent re-
446 gions. This variability is crucial when shaping the spatial
447 distribution of marine ecosystems since they are subject
448 to anthropogenic stress and resilience.

449 **4.3 Seasonal and monthly mean Chl *a* features**


450 The Gulf exhibits distinct seasonal variations in Chl *a*, de-
451 monstrating diverse ecological dynamics influenced by re-
452 gional climatic conditions and water exchange with the
453 Arabian Sea. The seasons are considered winter (Decem-
454 ber to March), spring (April to May), summer (June to
455 September), and autumn (October to November). The sea-
456 sonal variations in Chl *a* concentrations are not uniform
457 across the basin (Figure 3). Winter exhibits higher Chl *a*
458 concentrations in the eastern Gulf, adjacent to the Strait of
459 Hormuz and along the Iranian coast, while a major part of
460 the UAE coast experiences lower Chl *a* concentrations (Fig-
461 ure 3a). Relatively lower Chl *a* is observed in the offshore
462 waters of the northern Gulf, also. The nutrients advected
463 through the Strait of Hormuz are the primary cause for the
464 observed higher Chl *a* in the eastern Gulf, especially along
465 the coastal and offshore waters of central and southern
466 Iran (Moradi and Kabiri, 2015; Nezlin et al., 2010). This ex-
467 tension of nutrient-rich surface waters from the northern
468 Arabian Sea and the Sea of Oman results in notable east-
469 west Chl *a* differences within the Gulf. A similar extension
470 was observed in SST, indicating a relatively warm water
471 inflow to the Gulf during winter (Bordbar et al., 2024). The
472 building up of Chl *a* in the eastern Gulf is also supported
473 by shamal winds, which oppose and limit the northward
474 extension of the ICC (Figure 4a). Therefore, the nutrients
475 get consolidated within the eastern Gulf. The northern
476 head of the Gulf also exhibits higher Chl *a* due to the river
477 discharge from the Shatt-al-Arab River.

478 As spring sets in, there is a considerable overall de-
479 cline in Chl *a* across the Gulf, with most of the regions
480 experiencing values below 1 mg/m³. This period gener-
481 ally marks low values in most of the offshore regions, the
482 Iranian coast, and the UAE coast (Figure 3b). The inflow of
483 Indian Ocean Surface Water (IOSW) is increased compared
484 to winter (Figure 4b). However, the surface layer of the Sea
485 of Oman is in a nutrient-depleted condition during spring
486 (Ershadifar et al., 2023), which results in the significant re-
487 duction of Chl *a* within the Gulf. Therefore, the reduction of
488 Chl *a* in the Gulf is primarily attributed to the low nutrient
489 concentrations in the inflow waters. Spring is also charac-
490 terized by the beginning of stratification in the Gulf, thus
491 the nutrient mixing from the deep layer gets diminished
492 (Alosairi et al., 2011; Reynolds, 1993). However, the north-
493 ern head of the Gulf and Kuwait Bay have relatively higher
494 concentrations (1–2 mg/m³) compared to other regions.
495 This is mainly attributed to the nutrient supply from the
496 Shatt-Al-Arab River (Moradi, 2020; Pous et al., 2015). The
497 ACC is stronger during spring (Figure 4b), which enhances
498 the flow of the river-discharged waters along the Arabian


499 coast. The influence of the Shatt-Al-Arab river water in
500 the Gulf is limited to the northwestern Gulf (Al-Mudaffar
501 Fawzi and Mahdi, 2014). Therefore, relatively higher Chl *a*
502 has been observed along the Saudi Arabian coast during
503 this season compared to winter.

504 The summer and autumn mark the highest mean Chl *a*
505 concentrations (1–2 mg/m³) along the coast of Kuwait,
506 Saudi Arabia, Bahrain, Qatar, and the UAE (Figure 3c and
507 d). Compared to spring, the offshore waters in the north-
508 ern and central Gulf also exhibit higher Chl *a* concentra-
509 tions as the flow of nutrient-rich waters from the Sea of
510 Oman gets intensified. Along the Qatar coast, the highest
511 Chl *a* is observed during summer. This is consistent with
512 earlier studies (Aboobacker et al., 2024b; Elobaid et al.,
513 2022; Rakib et al., 2021). On the other hand, the Chl *a*
514 along the Iranian coast is relatively low during summer
515 and autumn compared to winter. The well-defined eddies
516 present during summer (Figure 4c) enable a southward
517 transport of nutrient-rich waters from the Iranian coast,
518 while the relatively low wind speeds in the later summer
519 and early autumn (Aboobacker et al., 2021a) cause their
520 settling in the southern Gulf. Within the circumference of
521 eddies, well-marked lower concentrations are evident dur-
522 ing summer. The improved mixing conditions and a decline
523 in SST facilitate nutrient resuspension in the offshore re-
524 gions of the Gulf during autumn, as exhibited by a relatively
525 higher Chl *a* compared to the summer.

526 Distinct spatial variability has been observed in the
527 monthly mean Chl *a* concentrations (Figure 5). The Strait
528 of Hormuz and the southern Iranian coast experience high
529 Chl *a* during January and February, while the lowest is in
530 June–August. This depicts the variations in the richness of
531 nutrients in the inflow waters from the Sea of Oman and
532 the role of shamal winds in controlling the circulations
533 in the Gulf (Mussa et al., 2024). The observed seasonal-
534 ity along the Iranian coast, especially the region under
535 the influence of IOSW (Nezlin et al., 2010), is similar to
536 the typical tropical/subtropical ocean pattern, while the
537 remaining Gulf coast has no such resemblances. Most of
538 the Gulf basin experiences the lowest Chl *a* (< 1 mg/m³)
539 during April and May as the nutrient supply is very lim-
540 ited. The percentages of areas with concentration less
541 than 1 mg/m³ are 77% (April), 72% (May), 71% (June),
542 68% (March), 61% (July), and 56% (August). On the other
543 hand, the southern and western shelves of the Gulf have
544 the highest Chl *a* during August–October. These months
545 mark the lowest mean wind speeds in the Gulf (Aboobacker
546 et al., 2021a), while the inflow of IOSW, the eddies, and
547 the ACC are stronger (Mussa et al., 2024). This helps to
548 maintain a nutrient-rich surface layer along these shelves.
549 A widespread Chl *a* distribution is notable during Novem-
550 ber, with the concentration exceeding 1 mg/m³ accounting
551 for 75% of the Gulf. Circulations in the Gulf are generally
552 weaker during this month (Mussa et al., 2024). Whereas
553 the hydrographic conditions and nutrient availability are

Figure 3. Mean Chl *a* during a) winter, b) spring, c) summer, and d) autumn for the period 1998–2022. Seasons are considered as DJFM, AM, JJAS, and ON, respectively.

Figure 4. Surface mean current vectors and magnitudes during winter, spring, summer, and autumn for the period 1998–2022.

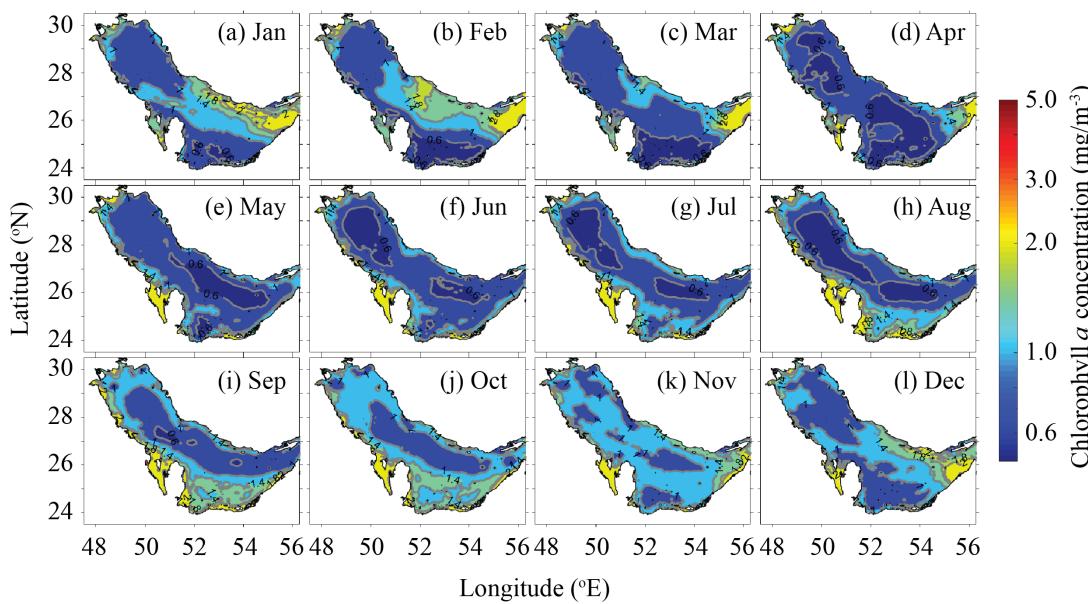
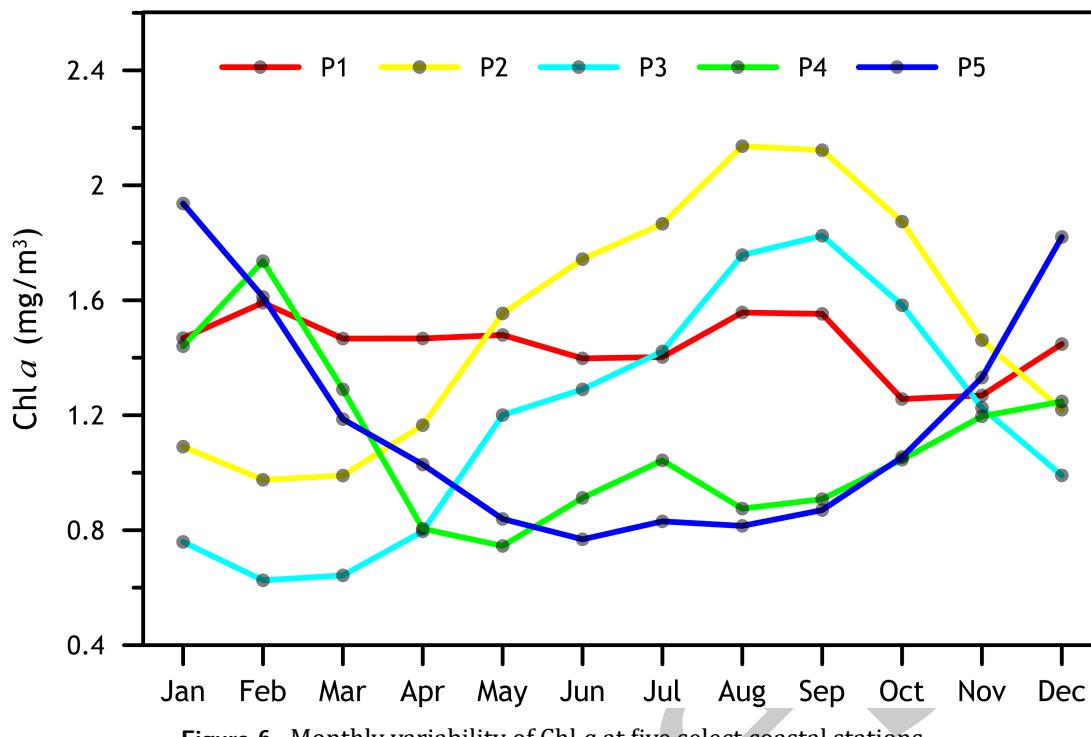


Figure 5. Monthly mean Chl *a* for the period 1998–2022.

554 in favor of this increased spatial distribution.


555 The monthly variability of Chl *a* concentrations at P1
 556 to P5 is shown in Figure 6. At P1, the monthly mean Chl *a*
 557 is between 1.26 and 1.59 mg/m³, where the seasonal vari-
 558 ations are minimal. This suggests that the north station is
 559 a region of high primary productivity, due to consistent nu-
 560 trient availability and favorable environmental conditions.
 561 This is because the river discharge is the main contribu-
 562 tor of nutrients to this region, and the limited seasonal
 563 variability can be attributed to the difference in the river
 564 discharge. Moreover, the impact of overall Gulf circula-
 565 tion is weaker in this region. Being situated along the southern
 566 shelf of the Gulf basin, the monthly mean Chl *a* concen-
 567 trations at P2 and P3 follow similar patterns, while the
 568 highest concentration occurs at P2. The range of mean
 569 concentrations at P2 and P3 is 0.98–2.14 and 0.63–1.82
 570 mg/m³, respectively. There exists strong seasonal vari-
 571 ability in Chl *a* concentrations at these locations. The peak
 572 Chl *a* at P2 and P3 occurred during August and September,
 573 respectively. The lag of one month on the peak concentra-
 574 tion is induced by the dynamics of the Gulf that alter the
 575 magnitudes of the flow. Mussa et al. (2024) identified a rel-
 576 atively higher mean current speed on the northern coast
 577 of Qatar during August compared to September, while the
 578 opposite is true along the southeastern coast of Qatar. The
 579 lowest Chl *a* at P2 and P3 occurred during February. This
 580 coincides with the highest shamal wind occurrence in the
 581 Gulf (Aboobacker et al., 2021a,b). The well mixing induced
 582 by shamal winds weakens the surface dominance of Chl *a*
 583 as the nutrients are re-distributed to the entire water col-
 584 umn.

585 The mean Chl *a* at P4 and P5 are nearly the same ex-
 586 cept during December and January. Both locations are
 587 situated along the Iranian coast, where the influence of

588 ICC is higher compared to the other areas of the Gulf. The
 589 ranges of mean concentrations at P4 and P5 are 0.75–1.74
 590 and 0.77–1.94 mg/m³, respectively. Seasonal variability is
 591 evident with lower concentrations during May and June,
 592 and higher concentrations during February and January,
 593 respectively at P4 and P5. This is directly linked to the sea-
 594 sonal variability of winds (Aboobacker et al., 2021a) and
 595 the circulation features (Mussa et al., 2024). An interesting
 596 feature observed between the southern shelves (P2 and
 597 P3) and the Iranian coast (P4 and P5) is the prevalence
 598 of Chl *a* concentration, which is inversely related, as illus-
 599 trated in the monthly patterns. This pattern occurred due
 600 to the difference in the available Chl *a* in the Iranian coast
 601 by the action of winter shamal winds and to the southern
 602 shelves by the action of eddies and the prevalence of ACC.
 603 Overall, the Gulf's Chl *a* dynamics underscore a complex
 604 response to seasonal climatic patterns, water mixing char-
 605 acteristics, and nutrient dynamics.

4.4 Long-term linear trends in Chl *a*

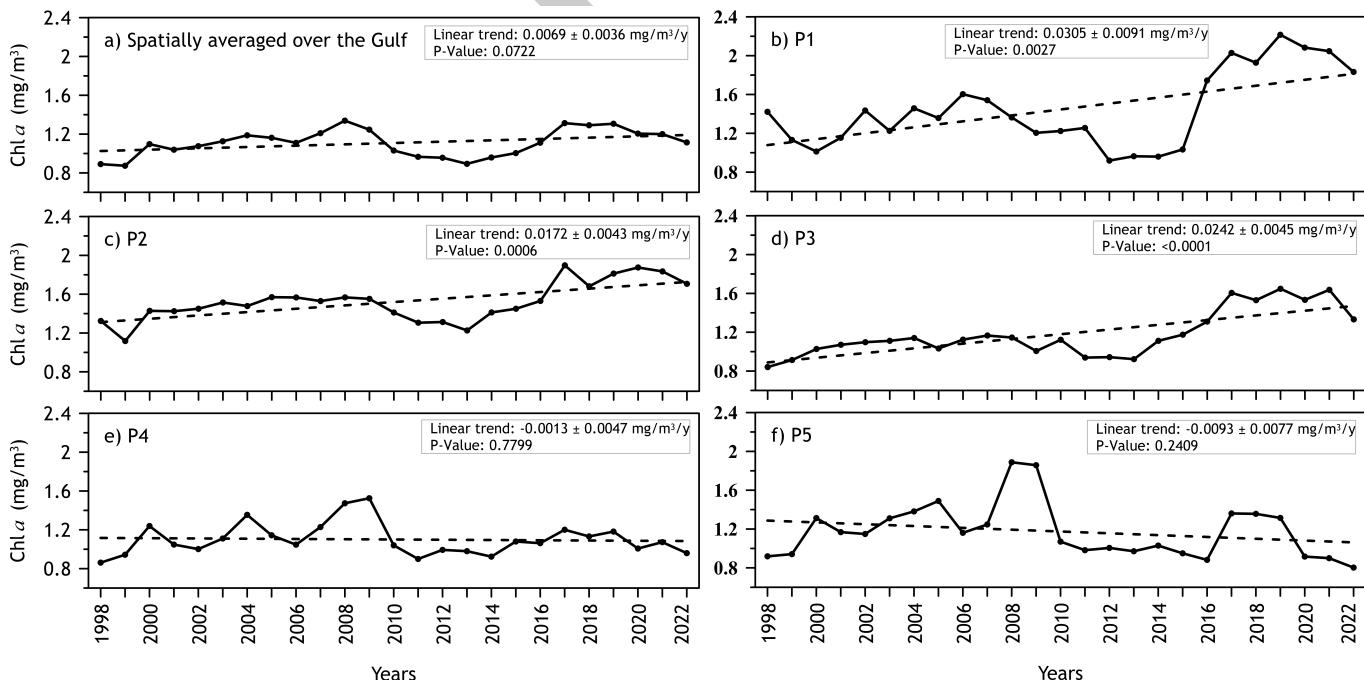

606 It is evident from the previous analyses that the Gulf ex-
 607 hibits a complex and dynamic pattern of Chl *a*, with distinct
 608 regional variations and responses to external forcing fac-
 609 tors. To assess the long-term temporal variability in Chl *a*,
 610 we further performed a linear trend analysis. Despite the
 611 lack of statistical significance, a positive trend is observed
 612 in the spatially averaged annual mean Chl *a* across the Gulf
 613 (Figure 7a). Nezlin et al. (2010) have shown that open wa-
 614 ters in the Gulf were characterized by an overall positive
 615 trend, with short-term negative (1997–1999) and positive
 616 (2000–2002 and 2007–2008) anomalies. However, our
 617 results show that this increase is not uniform throughout
 618 the Gulf but has distinct regional variations influencing the
 619 overall picture. This is evident when analyzing the linear
 620

Figure 6. Monthly variability of Chl *a* at five select coastal stations.

621 trend in annual mean Chl *a* at P1 to P5 (Figure 7b-f). The
 622 Chl *a* concentrations at P1, P2, and P3 show an increasing
 623 trend during 1998–2022 with estimated rates of 0.0305,
 624 0.0172, and 0.0242 mg/m³/y, respectively. In contrast, the
 625 Chl *a* at P5 shows a weak decreasing trend, while that at

626 P4 has no clear trends.

627 The observed increasing trend in Chl *a* concentrations
 628 across the Gulf, especially the northern (P1) and southern
 629 shelves (P2 and P3), is fascinating as far as the primary
 630 productivity is concerned. This highlights the complex

Figure 7. Interannual variability of mean Chl *a* at select stations.

Table 3. Results of multiple linear regression analysis. The stars represent the levels of significance for 3 of the most used levels. The correlation coefficient (r) with p-value < 0.001 is flagged with ***; with p-value < 0.01 is flagged with **; with p-value < 0.05 is flagged with *. Non-significant r values are not presented.

Model	P1		P2		P3		P4		P5	
	R ²	r	R ²	r	R ²	r	R ²	r	R ²	r
Chl <i>a</i> ~ SST	0.00	–	0.69	0.83***	0.60	0.77***	0.16	0.4***	0.17	0.41***
Chl <i>a</i> ~ WS	0.03	0.16**	0.42	0.65***	0.37	0.61***	0.02	0.15**	0.02	0.15**
Chl <i>a</i> ~ SLA	0.01	–	0.22	0.47***	0.20	0.45***	0.02	0.14*	0.00	–
Chl <i>a</i> ~ SST + SLA	0.01	–	0.75	0.86***	0.66	0.81***	0.16	0.40***	0.17	0.41***
Chl <i>a</i> ~ SST + WS	0.03	0.16*	0.71	0.84***	0.61	0.78***	0.19	0.44***	0.19	0.44***
Chl <i>a</i> ~ WS + SLA	0.03	0.16*	0.51	0.71***	0.47	0.68***	0.03	0.17*	0.03	0.16*
Chl <i>a</i> ~ SST + SLA + WS	0.03	0.18*	0.76	0.87***	0.67	0.82***	0.19	0.44***	0.19	0.44***

631 interplay of regional factors and leads to potential implications
 632 for the ecosystem. The trend observed in the Gulf
 633 mirrors broader regional trends documented for the Sea of
 634 Oman and the Arabian Sea. Chinta et al. (2024) reported
 635 a decline in Chl *a* in the Sea of Oman at a rate of -0.088
 636 mg/m³/y, suggesting a broader regional shift in primary
 637 productivity. Roxy et al. (2016) further underscored this
 638 trend, predicting a potential decline in primary production
 639 for the Arabian Sea in the future. The observed consistent
 640 decline, particularly evident along the eastern coast
 641 of the Gulf bordered by Iran, suggests a shared influence
 642 from the Arabian Sea and the Sea of Oman. This could be
 643 due to a combination of factors such as climate change,
 644 altered upwelling patterns, or nutrient depletion within
 645 the Arabian Sea. The contrasting Chl *a* trends observed
 646 between the Iranian and Arabian coasts are likely driven by
 647 differences in nutrient availability. While the Iranian coast
 648 benefits from the nutrient influx from the Sea of Oman,
 649 the Arabian coast appears to rely more heavily on other
 650 nutrient sources. Al-Thani et al. (2023) reported the pos-
 651 sibility of localized frontal upwelling based on their field
 652 measurements in the Qatar waters, which could contribute
 653 to nutrient enrichment in the southern Gulf. This suggests
 654 that factors such as riverine inputs (Moradi, 2020), atmo-
 655 spheric deposition (Asgari and Soleimany, 2023), localized
 656 upwelling (Al-Thani et al., 2023), and even precipitation
 657 (Nezlin et al., 2010) may play a more dominant role in
 658 sustaining primary productivity along the Arabian coast.

659 The increasing Chl *a* in the northern and southern
 660 Gulf could contribute to an increased risk of harmful algal
 661 blooms (HABs). The Gulf has experienced an increasing
 662 frequency and severity of HABs in recent decades (Al She-
 663 hhi et al., 2014; Al-Yamani et al., 2020). One such event was
 664 recorded in 2008–2009. These blooms can have detri-
 665 mental effects, including marine life mortalities, as observed
 666 in Kuwait Bay (Al-Yamani et al., 2020), and impacts on hu-
 667 man health through respiratory irritation (Al Shehhi et
 668 al., 2014; Tomlinson et al., 2009). The increased nutrient
 669 availability driving the Chl *a* increase may also exacerbate
 670 eutrophication, leading to oxygen depletion and further
 671 stress on marine organisms. The declining Chl *a* trend

672 along the Iranian coast (P5) may indicate a reduction in
 673 primary productivity, potentially leading to food web shifts.
 674 A decrease in phytoplankton biomass could impact higher
 675 trophic levels, affecting fish populations and other marine
 676 organisms that rely on phytoplankton as a food source.
 677 This trend, coupled with the broader regional decline in
 678 Chl *a* observed in the Sea of Oman (Chinta et al., 2024) and
 679 the predicted decline in primary production for the Ara-
 680 bian Sea (Roxy et al., 2016), suggests a complex interplay of
 681 regional and local factors influencing primary productivity
 682 in the Gulf.

4.5 Relationship between Chl *a* and environmental factors

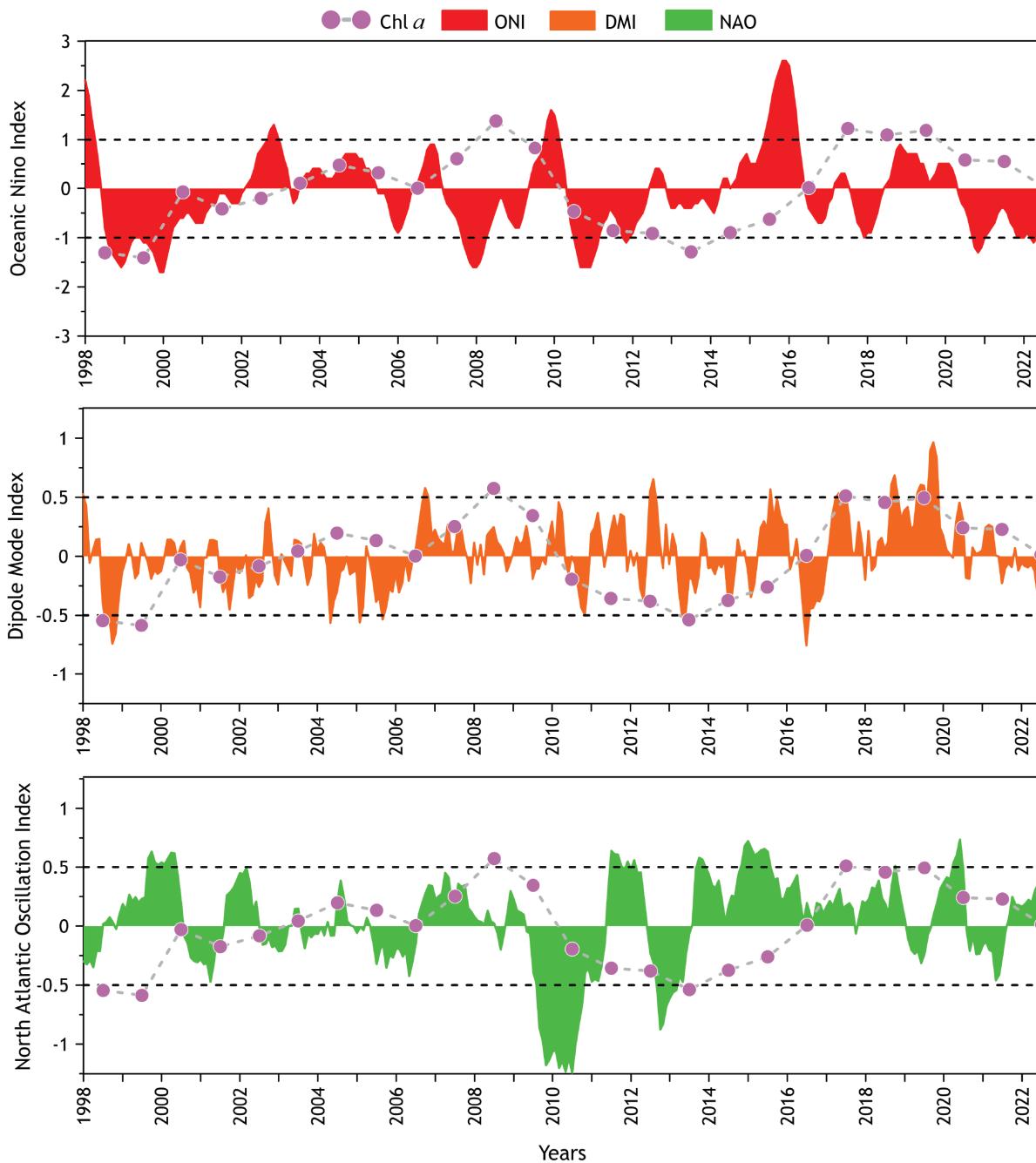
683 A multiple linear regression model has been applied to
 684 investigate the relationship between Chl *a* and possible en-
 685 vironmental forcing factors such as SST, wind speed (WS),
 686 and sea level anomaly (SLA). Results show that the role
 687 of forcing factors has significant differences with different
 688 model combinations. The values of the coefficient of deter-
 689 mination (R²) and correlation coefficient (r) are given in
 690 Table 3. The individual correlation of SST and wind speed
 691 with Chl *a* is higher than that of SLA for all the selected sta-
 692 tions. When the correlations with each of the independent
 693 variables are considered separately, the highest value was
 694 found for SST (R² = 0.69), followed by wind speed and SLA
 695 (R² = 0.42 and 0.22, respectively) at P2.

696 The data at P2 and P3 show significant correlation with
 697 higher values of r for all the combinations in the model;
 698 whereas the data at P1, P4, and P5 show relatively lower
 699 r values in most of the combinations of variables in the
 700 model, and they are not significant. The pairwise regres-
 701 sion analysis indicates that the addition of SLA as an inde-
 702 pendent variable with SST increases the R² value by a mod-
 703 est 0.06 at both P2 and P3. That is, when SLA was added
 704 to the model along with SST, the increase in R² associated
 705 with the Chl *a* was only about 6%. Moreover, the addition
 706 of wind speed with SST in the model shows a similar cor-
 707 relation with Chl *a* concentration, without considerable
 708 changes in R² values. Unlike SST, SLA had a better associa-
 709 tion with wind speed in the pairwise regression, increasing
 710

R² from 0.22 to 0.51, at location P2. Hence, wind speed contributed to a 29% variance in R² when combined with SLA in the model. Finally, with all variables taken together as independent variables, the explained variance (R²) is 0.76 for all data, which is close to the result of the previous pairwise model with SST and SLA (R² = 0.75). Overall, the data show that SST has a stronger correlation with Chl *a* than wind speed and SLA, respectively. The stronger correlation we observed between SST and Chl *a* likely reflects the fundamental role of temperature in regulating phytoplankton growth and ecosystem dynamics. Temperature directly influences phytoplankton metabolic rates, water column stratification, nutrient availability, and species composition, all of which can impact Chl *a* concentrations (Doney et al., 2012).

4.6 Interannual variations and the influence of global climate oscillations

The interannual variations in basin-averaged annual mean Chl *a* reveal a clear pattern of peaks and troughs during the study period (Figure 7a). The years 2000, 2008, and 2017 are characterized by high Chl *a* levels, while a period of significantly low Chl *a* is observed from 2010 to 2014. This period of low Chl *a* is particularly pronounced at P1, P2, and P3 (Figure 7b,c,d). Post-2015, an increasing trend in annual mean Chl *a* is observed across most regions, indicating a rebound from the previous low period. This does not follow at P4 and P5. This regional anomaly could be attributed to various factors that need further investigation. The high Chl *a* observed in 2008 is most prominent at P5, indicating a localized influence on the regional distribution of Chl *a*. Conversely, the period of low Chl *a* from 2010 to 2014 is more intense at P1 and P2 compared to P3.


Studies have demonstrated that global climatic oscillations can significantly influence biological productivity in various oceanic regions (Barimalala et al., 2013; Cianca et al., 2012; Racault et al., 2017; Wiggert et al., 2009). The impact of these oscillations on Chl *a*, a key indicator of phytoplankton biomass and primary productivity, has been observed in different parts of the world's oceans. In the tropical Indian Ocean, Wiggert et al. (2009) showed that Chl *a* concentrations are impacted by Indian Ocean Dipole (IOD) events, highlighting the connection between large-scale climate patterns and regional biological productivity. Furthermore, Barimalala et al. (2013) found a notable impact of El Niño events on the Arabian Sea, reporting a 24% decrease in Chl *a* concentrations during winter. These findings highlight the importance of considering climate oscillations when studying the Chl *a* variations, especially at interannual time scales.

The basin-averaged annual mean Chl *a* overlaid with Oceanic Niño Index (ONI), Dipole Mode Index (DMI), and North Atlantic Oscillation (NAO) index is shown in Figure 8. The relationship between annual mean Chl *a* variability

and climate indices is not linear. This is likely due to the co-existence of multiple climate phenomena and regional factors. ENSO, IOD, and NAO can exert a broad influence on global atmospheric circulation patterns, which in turn impact a variety of oceanographic processes, including wind patterns, SST, upwelling, and nutrient transport (Abish et al., 2018; Grunseich et al., 2011; Selanki et al., 2022). To further investigate these associations in the Gulf, we performed a composite analysis of annual mean Chl *a* with respect to each climate index (Table 4). Composite analysis helps to isolate the signal of a specific climate event or phenomenon from the inherent variability of the climate system. By averaging data across multiple occurrences of the event, the signal is amplified while the random noise is suppressed. The years selected for the composite are (1) El Niño: 1998, 2003, 2007, 2010, and 2016; (2) La Niña: 1999, 2000, 2008, 2011, 2012, 2021, and 2022; (3) Positive IOD: 2006, 2012, 2015, and 2019; (4) Negative IOD: 1998, 2010, 2014, 2016, and 2021; (5) positive NAO: 2007, 2015, and 2020; and (6) negative NAO: 2010, and 2021.

The composite analysis of Chl *a*, wind speed, SST, and sea level anomaly (SLA) reveals the role of physical mechanisms that underpin the observed variability in Chl *a* concentrations during different phases of ENSO, IOD, and NAO (Table 4). During La Niña events, elevated Chl *a* levels across most stations (except P1) coincide with increased wind speed and SLA, while they are aligned with the cooler SST along the Iranian coast. La Niña reduces the inflow from the Arabian Sea to the Gulf, as large-scale circulations weaken (Jensen, 2007). The relatively warm water inflow from the Arabian Sea to the Gulf during winter is more prominent along the Iranian coast, while its reduction enhances the sea surface cooling by the effect of strong winter shamal winds. On the other hand, higher wind speeds and increased SLA enhance upwelling and vertical mixing in the Gulf, which increases the nutrient availability in the surface layer that is conducive to phytoplankton growth. This is consistent with the broader observations in the Indian Ocean that the interplay between cooler SSTs and stronger winds during La Niña years promotes favorable conditions for Chl *a* enhancement (Barimalala et al., 2013). This is also aligned closely with the results obtained in the Red Sea (Raitsos et al., 2015). Although the northern head of the Gulf (P1) responds quite differently, the basin-averaged values support the above observations. In general, ENSO can influence winter convective mixing and mixed-layer depth, thereby influencing the biological response of the Gulf significantly.

The composite analysis with IOD events reveals that the positive phases are aligned with an increase in Chl *a* and wind speed and with a decrease in SST and SLA (Table 4). The effect of IOD is quite complex in the Arabian Sea and adjacent areas, especially when they co-occur with ENSO. For instance, the co-occurrence of positive IOD and El Niño

Figure 8. Climate indices of ENSO, IOD, and NAO overlaid with basin-averaged annual mean Chl *a*.

in the northern Arabian Sea reduces the Chl *a*, while an independent positive IOD increases the Chl *a* (Selanki et al., 2022). However, irrespective of their co-occurrence, the results highlight an increase in Chl *a* (except at P1) during positive IODs, suggesting that positive IOD can favor increased primary production in the Gulf. At P1, higher Chl *a* occurred during negative IOD, which is supported by a lower SLA. This indicates that localised factors are more prevalent in the northern Gulf in determining the dominance of Chl *a* distribution than the direct impact of climatic oscillations such as IOD and ENSO.

The composite analysis of Chl *a* with NAO responds quite differently compared to that with ENSO and IOD (Table 4). Higher Chl *a* along the Arabian coast is observed during negative NAO, while that along the Iranian coast and most parts of the Gulf (basin-averaged) is observed during positive NAO. Whereas higher wind speeds have occurred during positive NAO, and lower SST and SLA have occurred during negative NAO, irrespective of the spatial distinction identified for the Chl *a* in the Gulf. Positive NAO enhances shamal winds that lead to relatively cooler SSTs in the Gulf during summer (Dasari et al., 2022; Lachkar et al., 2025).

832

833

834

835

836

837

838

839

840

841

842

Table 4. Composite of annual means of Chl *a*, SST, wind speed, and SLA during ENSO, IOD, and NAO events. Bold numbers indicate a higher value compared to their opposite phase.

	Station	El Niño	La Niña	pIOD	nIOD	pNAO	7nNAO
Chl <i>a</i> (mg/m ³)	P1	1.43	1.37	1.44	1.48	1.55	1.64
	P2	1.46	1.47	1.54	1.50	1.61	1.62
	P3	1.11	1.13	1.22	1.20	1.29	1.38
	P4	1.06	1.08	1.08	0.99	1.11	1.06
	P5	1.09	1.12	1.11	0.96	1.04	0.98
	Gulf-average	1.07	1.08	1.09	1.04	1.14	1.12
Wind speed (m/s)	P1	4.92	5.05	5.02	4.89	4.98	4.90
	P2	4.74	4.93	4.79	4.69	4.82	4.62
	P3	4.33	4.46	4.41	4.25	4.44	4.16
	P4	3.94	4.08	3.98	3.88	3.98	3.73
	P5	3.18	3.22	3.21	3.14	3.18	3.10
	Gulf-average	3.67	3.75	3.73	3.63	3.74	3.60
SST (°C)	P1	24.97	24.64	24.89	25.14	24.96	25.39
	P2	26.68	26.54	26.67	26.92	26.62	27.19
	P3	27.87	27.79	27.72	28.07	27.71	28.39
	P4	27.44	27.47	27.38	27.67	27.40	28.08
	P5	28.03	28.10	27.91	28.20	27.96	28.54
	Gulf-average	26.99	26.90	26.91	27.19	26.94	27.50
SLA (m)	P1	0.040	0.047	0.063	0.062	0.086	0.099
	P2	0.047	0.056	0.069	0.080	0.090	0.107
	P3	0.045	0.064	0.067	0.073	0.088	0.102
	P4	0.042	0.054	0.063	0.065	0.084	0.097
	P5	0.048	0.060	0.073	0.074	0.095	0.103
	Gulf-average	0.044	0.056	0.066	0.069	0.089	0.101

843 The winter shamal also shows a significant enhancement
 844 in the Gulf during positive NAO (Nelli et al., 2022). Amid
 845 increased wind speeds, cooler SST, and lower SLA, the re-
 846 duction in Chl *a* during the positive NAO is a unique feature
 847 along the Iranian coast. This is primarily because of the
 848 changes in the circulation of the Arabian Sea and the Gulf.
 849 Strong winter shamal winds causes reduction in the inflow
 850 from the Arabian Sea and the general circulation in the
 851 Gulf (Asharaf et al., 2025; Mussa et al., 2023; Rafati and
 852 Rezazadeh, 2020). Such changes can directly impact the
 853 surface waters on the Iranian coast.

854 In general, climate oscillations can cause significant
 855 changes in physical-biological processes that arise from
 856 the changes in wind patterns, mixing, nutrient availabil-
 857 ity, and phytoplankton community composition. Given
 858 the intricate interplay between SST, wind speed, SLA, and
 859 biological productivity, and the spatial heterogeneity ob-
 860 served across the Gulf, further studies are essential to
 861 unravel the underlying mechanisms and improve predic-
 862 tive understanding of climate-driven marine ecosystem
 863 responses.

5. Conclusions

864 This study demonstrates the intricate relationship between
 865 climatic conditions, nutrient dynamics, and marine produc-
 866 tivity in the Gulf based on merged satellite data obtained
 867 from CMEMS during 1998–2022. Results show that the
 868 northern head of the Gulf experiences a higher concentra-
 869 tion of Chl *a* throughout the year due to the influence of the
 870 river Shatt-Al-Arab. Seasonal variations further illustrate
 871 the Gulf's dynamic ecosystem, with the winter showing en-
 872 hanced Chl *a*, particularly along the Iranian coastal waters
 873 of the central and eastern Gulf, facilitated by nutrient-rich
 874 inflow from the Sea of Oman. On the other hand, the spring
 875 and summer are characterized by enhanced Chl *a* along
 876 the coasts of Kuwait, Saudi Arabia, Bahrain, Qatar, and the
 877 UAE, while a severe decline is identified along the Iranian
 878 coast. This is mainly due to the increased stratification,
 879 which inhibits nutrient mixing. Further, the less-nutrient
 880 inflow from the Sea of Oman during spring causes a deple-
 881 tion in the nutrient availability of the Gulf, which results
 882 in a lower Chl *a* concentration.

883 The trends in Chl *a* concentrations across the Gulf high-
 884

light the complex interplay of regional factors affecting primary productivity. A significant increasing trend is observed along the northern and southern shelves, while a notable decline is experienced along the Iranian coast, suggesting a shared influence from the adjacent Sea of Oman and the northern Arabian Sea, possibly due to altered upwelling or nutrient depletion. The observed contrasting trends along the Iranian coast likely result from differing nutrient sources. Multiple linear regression analysis shows the strongest correlation for SST than wind speed and SLA, highlighting its role in regulating phytoplankton growth. Composite analyses reveal that La Niña and positive IOD phases generally enhance Chl *a* across most of the Gulf, with a corresponding increase in wind speed and decrease in SST. Interestingly, the northern head of the Gulf exhibits a unique response; the Chl *a* levels increase during El Niño and negative IOD phases. Positive NAO enhances the Chl *a* in most parts of the Gulf, including the Iranian coast, while negative NAO enhances the Chl *a* along the Arabian coast, irrespective of the basin-scale consistency of wind speed, SST, and SLA with NAO. These provide a clear distinction between the two regions in the Gulf, supporting the role of localised effects on the Chl *a* distribution. Given the intricate interplay between SST, wind speed, SLA, and biological productivity, and the spatial heterogeneity observed across the Gulf, further studies are essential to unravel the underlying mechanisms and improve predictive understanding of climate-driven marine ecosystem responses.

Data availability

The GlobColour and sea level anomaly data used in the study were extracted from the CMEMS database, ERA5 winds from ECMWF, and sea surface temperature from AVHRR, which are freely available. The in situ data used for verification will be made available upon request.

Funding sources

This work was supported by the Qatar University (QU) Collaborative Grant (QUCG-ESC-22/23-591), which is covered under the UNESCO Chair in Marine Sciences at Qatar University.

Authors contribution

Cheriyeri Poyil Abdulla, Valliyil Mohammed Aboobacker, and Muhammad Shafeeqe conceptualized and designed the study, prepared materials, collected data, and performed analyses. Cheriyeri Poyil Abdulla wrote the first draft of the manuscript. Valliyil Mohammed Aboobacker and Ponnumony Vethamony critically reviewed and edited the manuscript. All authors contributed to subsequent revisions, read, and approved the final version of the manuscript.

Acknowledgments

This work was funded by the Qatar University (QU) Collaborative Grant (QUCG-ESC-22/23-591). The work also falls under the scope of the UNESCO Chair in Marine Sciences at Qatar University. We express our gratitude to Prof. Hamad Al-Saad Al-Kuwari, Director of the Environmental Science Center (ESC) for his continuous encouragement and support. The satellite/reanalysis data used in this study were obtained from CMEMS, ECMWF, AVHRR, and AVISO.

Conflict of interest

None declared.

References

Abish, B., Cherchi, A., Ratna, S.B., 2018. *ENSO and the recent warming of the Indian Ocean*. Int. J. Climatol. 38 (1), 203–214.
<https://doi.org/10.1002/joc.5170>

Aboobacker, V.M., Abdulla, C.P., Al-Ansari, E.M.A.S., Vethamony, P., 2024a. *Impacts of Shamal and Nashi winds on the hydrodynamics along the northeast coast of Qatar, central Arabian Gulf*. J. Coastal Res. 113, 609–613.
<https://doi.org/10.2112/JCR-SI113-120.1>

Aboobacker, V.M., Hasna, V.M., Al-Ansari, E.M.A.S., Vethamony, P., 2024b. *Nearshore Hydrography along the Coast of Doha, Central Arabian Gulf*. J. Coastal Res. 113, 422–426.
<https://doi.org/10.2112/JCR-SI113-083.1>

Aboobacker, V.M., Samiksha, S.V., Veerasingam, S., Al-Ansari, E.M.A.S., Vethamony, P., 2021a. *Role of shamal and easterly winds on the wave characteristics off Qatar, central Arabian Gulf*. Ocean Eng. 236, 109457.
<https://doi.org/10.1016/j.oceaneng.2021.109457>

Aboobacker, V.M., Shanas, P.R., Veerasingam, S., Al-Ansari, E.M.A.S., Sadooni, F.N., Vethamony, P., 2021b. *Long-term assessment of onshore and offshore wind energy potentials of Qatar*. Energies 14 (4), 1178.
<https://doi.org/10.3390/en14041178>

Ahmad, F., Sultan, S., 1991. *Annual mean surface heat fluxes in the Arabian Gulf and the net heat transport through the Strait of Hormuz*. Atmos. Ocean 29 (1), 54–61.
<https://doi.org/10.1080/07055900.1991.9649392>

Al Senafi, F., 2022. *Atmosphere-ocean coupled variability in the Arabian/Persian Gulf*. Front. Marine Sci. 9, 809355.
<https://doi.org/10.3389/fmars.2022.809355>

Al Shehhi, M.R., Gherboudj, I., Ghedira, H., 2014. *An overview of historical harmful algae blooms outbreaks in the Arabian Seas*. Mar. Pollut. Bull. 86 (1–2), 314–324.
<https://doi.org/10.1016/j.marpolbul.2014.06.048>

Al-Ansari, E.M.A.S., Husrevoglu, Y.S., Yigiterhan, O., Youssef, N., Al-Maslamani, I.A., Abdel-Moati, M.A., Al-Mohamed, A.J., Aboobacker, V.M., Vethamony, P., 2022. *Seasonal*

variability of hydrography off the east coast of Qatar, central Arabian Gulf. *Arab. J. Geosci.* 15 (22), 1659.
<https://doi.org/10.1007/s12517-022-10927-4>

Al-Mudaffar Fawzi, N., Mahdi, B.A., 2014. *Iraq's inland Water quality and its impact on the North-Western Arabian Gulf*. *Marsh Bull.* 9 (1).

Al-Naimi, N., Raitsos, D.E., Ben-Hamadou, R., Soliman, Y., 2017. *Evaluation of satellite retrievals of chlorophyll a in the Arabian Gulf*. *Remote Sens-Basel.* 9 (3), 301.
<https://doi.org/10.3390/rs9030301>

Alosairi, Y., Alsulaiman, N., Petrov, P., Karam, Q., 2019. *Responses of salinity and chlorophyll a to extreme rainfall events in the northwest Arabian Gulf: Emphasis on Shatt Al-Arab*. *Mar. Pollut. Bull.* 149, 110564.
<https://doi.org/10.1016/j.marpolbul.2019.110564>

Alosairi, Y., Imberger, J., Falconer, R.A., 2011. *Mixing and flushing in the Persian Gulf (Arabian Gulf)*. *J. Geophys. Res.-Oceans* 116 (C3).
<https://doi.org/10.1029/2010JC006769>

Alosairi, Y., Pokavanich, T., 2017. *Residence and transport time scales associated with Shatt Al-Arab discharges under various hydrological conditions were estimated using a numerical model*. *Mar. Pollut. Bull.* 118 (1-2), 85-92.
<https://doi.org/10.1016/j.marpolbul.2017.02.039>

Al-Said, T., Al-Ghunaim, A., Subba Rao, D., Al-Yamani, F., Al-Rifaie, K., Al-Baz, A., 2017. *Salinity-driven decadal changes in phytoplankton community in the NW Arabian Gulf of Kuwait*. *Environ. Monit. Assess.* 189, 1-17.
<https://doi.org/10.1007/s10661-017-5969-4>

Al-Subhi, A.M., Abdulla, C.P., 2021. *Sea-level variability in the Arabian gulf in comparison with global oceans*. *Remote Sens-Basel.* 13 (22), 4524.
<https://doi.org/10.3390/rs13224524>

Al-Thani, J.A., Soliman, Y., Al-Maslamani, I.A., Yigiterhan, O., Al-Ansari, E.M.A.S., 2023. *Physical drivers of chlorophyll and nutrients variability in the Southern-Central Arabian Gulf*. *Estuar. Coast. Shelf Sci.* 283, 108260.
<https://doi.org/10.1016/j.ecss.2023.108260>

Al-Yamani, F.Y., Polikarpov, I., Saburova, M., 2020. *Marine life mortalities and harmful algal blooms in the Northern Arabian Gulf*. *Aquat. Ecosyst. Health* 23 (2), 196-209.
<https://doi.org/10.1080/14634988.2020.1798157>

Amorim, F.L.L., Balkoni, A., Sidorenko, V., Wiltshire, K.H., 2024. *Analyses of sea surface chlorophyll a trends and variability from 1998 to 2020 in the German Bight (North Sea)*. *Ocean Sci.* 20 (5), 1247-1265.
<https://doi.org/10.5194/os-20-1247-2024>

Anjaneyan, P., Kuttippurath, J., Kumar, P.H., Ali, S., Raman, M., 2023. *Spatio-temporal changes of winter and spring phytoplankton blooms in the Arabian Sea during the period 1997-2020*. *J. Environ. Manage.* 332, 117435.
<https://doi.org/10.1016/j.jenvman.2023.117435>

Asharaf, M., Aboobacker, V.M., Abdulla, C.P., Joydas, T.V., Manikandan, K.P., Rafeeq, M., Al-Suwailem, A., Vethamony, P., 2025. *Perspectives of seasonal hydrography and water masses in Saudi waters of the Arabian Gulf*. *Oceanologia* 67 (4), 67407.
<https://doi.org/10.5697/KPCV6249>

Asgari, H.M., Soleimany, A., 2023. *Long-term study of desert dust deposition effects on phytoplankton biomass in the Persian Gulf using Google Earth Engine*. *Mar. Pollut. Bull.* 195, 115564.
<https://doi.org/10.1016/j.marpolbul.2023.115564>

Barimalala, R., Bracco, A., Kucharski, F., McCreary, J.P., Crise, A., 2013. *Arabian Sea ecosystem responses to the South Tropical Atlantic teleconnection*. *J. Mar. Syst.* 117, 14-30.
<https://doi.org/10.1016/j.jmarsys.2013.03.002>

Behrenfeld, M.J., Falkowski, P.G., 1997. *Photosynthetic rates derived from satellite-based chlorophyll concentration*. *Limnol. Oceanogr.* 42 (1), 1-20.
<https://doi.org/10.4319/lo.1997.42.1.0001>

Bordbar, M.H., Nasrolahi, A., Lorenz, M., Moghaddam, S., Burchard, H., 2024. *The Persian Gulf and Oman Sea: climate variability and trends inferred from satellite observations*. *Estuar. Coast. Shelf S.* 296, 108588.
<https://doi.org/10.1016/j.ecss.2023.108588>

Chinta, V., Kalhoro, M.A., Liang, Z., Tahir, M., Song, G., Zhang, W., 2024. *Decadal climate variability of chlorophyll a in response to different oceanic factors in the Western Indian ocean: the Sea of Oman*. *Clim. Dynam.* 62 (9), 8675-8690.
<https://doi.org/10.1007/s00382-024-07354-4>

Cianca, A., Godoy, J., Martin, J., Perez-Marrero, J., Rueda, M., Llinás, O., Neuer, S., 2012. *Interannual variability of chlorophyll and the influence of low-frequency climate modes in the North Atlantic subtropical gyre*. *Global Biogeochem. Cy.* 26 (2).
<https://doi.org/10.1029/2010GB004022>

Currie, J.C., Lengaigne, M., Vialard, J., Kaplan, D.M., Aumont, O., Naqvi, S., Maury, O., 2013. *Indian Ocean dipole and El Niño/southern oscillation impacts on regional chlorophyll anomalies in the Indian Ocean*. *Biogeosciences* 10 (10), 6677-6698.
<https://doi.org/10.5194/bg-10-6677-2013>

Dai, Y., Yang, S., Zhao, D., Hu, C., Xu, W., Anderson, D.M., Li, Y., Song, X.P., Boyce, D.G., Gibson, L., Zheng, C., 2023. *Coastal phytoplankton blooms expand and intensify in the 21st century*. *Nature* 615 (7951), 280-284.
<https://doi.org/10.1038/s41586-023-05760-y>

Dasari, H.P., Ashok, K., Saharwardi, M.S., Luong, T.M., Masabathini, S., Vankayalapati, K., Gandham, H., Thiruridathil, R., Zamreeq, A., Ghulam, A., Abulnaja, Y., 2025. *Understanding and Predicting the November 24, 2022, Record-Breaking Jeddah Extreme Rainfall Event*. *Meteorol. Applicat.* 32 (5), p.e70100.
<https://doi.org/10.1002/met.70100>

1096 Devlin, M., Massoud, M., Hamid, S., Al-Zaidan, A., Al-Sarawi,
1097 H., Al-Enezi, M., Al-Ghofran, L., Smith, A.J., Barry, J.,
1098 Stentiford, G.D., Morris, S., 2015. *Changes in the water
1099 quality conditions of Kuwait's marine waters: long-term
1100 impacts of nutrient enrichment*. Mar. Pollut. Bull. 100
1101 (2), 607–620.
1102 <https://doi.org/10.1016/j.marpolbul.2015.10.022>

1103 Devlin, M.J., Breckels, M., Graves, C.A., Barry, J., Capuzzo,
1104 E., Huerta, F.P., Al Ajmi, F., Al-Hussain, M.M., LeQuesne,
1105 W.J., Lyons, B.P., 2019. *Seasonal and temporal drivers
1106 influencing phytoplankton community in Kuwait marine
1107 waters: documenting a changing landscape in the
1108 Gulf*. Front. Marine Sci. 6, 141.
1109 <https://doi.org/10.3389/fmars.2019.00141>

1110 Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F.,
1111 English, C.A., Galindo, H.M., Grebmeier, J.M., Hollowed,
1112 A.B., Knowlton, N., Polovina, J., 2012. *Climate change
1113 impacts on marine ecosystems*. Annu. Rev. Mar. Sci. 4
1114 (2012), 11–37.
1115 <https://doi.org/10.1146/annurev-marine-041911-111611>

1117 El Hourany, R., Abboud-Abi Saab, M., Faour, G., Mejia, C.,
1118 Crépon, M., Thiria, S., 2019. *Phytoplankton diversity in
1119 the Mediterranean Sea from satellite data using self-
1120 organizing maps*. J. Geophys. Res.-Oceans 124 (8),
1121 5827–5843.
1122 <https://doi.org/10.1029/2019JC015131>

1123 Elbaid, E.A., Al-Ansari, E.M.A.S., Yigiterhan, O., Aboobacker,
1124 V.M., Vethamony, P., 2022. *Spatial variability of summer
1125 hydrography in the central Arabian Gulf*. Oceanologia
1126 64 (1), 75–87.
1127 <https://doi.org/10.1016/j.oceano.2021.09.003>

1128 Ershadifar, H., Saleh, A., Kor, K., Ghazilou, A., Baskaleh, G.,
1129 Hamzei, S., 2023. *Nutrients and chlorophyll a in the
1130 Gulf of Oman: high seasonal variability in nitrate distri-
1131 bution*. Deep-Sea Res. Pt. II 208, 105250.
1132 <https://doi.org/10.1016/j.dsr2.2022.105250>

1133 Ford, D., Barciela, R., 2017. *Global marine biogeochemical
1134 reanalyses assimilating two different sets of merged
1135 ocean colour products*. Remote Sens. Environ. 203,
1136 40–54.
1137 <https://doi.org/10.1016/j.rse.2017.03.040>

1138 Ford, D.A., Edwards, K.P., Lea, D., Barciela, R.M., Martin,
1139 M.J., Demaria, J., 2012. *Assimilating GlobColour ocean
1140 colour data into a pre-operational physical-biogeo-
1141 chemical model*. Ocean Sci. 8 (5), 751–771.
1142 <https://doi.org/10.5194/os-8-751-2012>

1143 Gao, K., Zhang, Y., Häder, D.P., 2018. *Individual and inter-
1144 active effects of ocean acidification, global warming,
1145 and UV radiation on phytoplankton*. J. Appl. Phycol. 30,
1146 743–759.
1147 <https://doi.org/10.1007/s10811-017-1329-6>

1148 Garnesson, P., Mangin, A., Bretagnon, M., Jutard, Q., 2025. *Quality
1149 information document. Ocean Colour Production
1150 Centre*.
1151 <https://documentation.marine.copernicus.eu/QUID/>
1152 [CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf](https://documentation.marine.copernicus.eu/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf)
1153

1154 Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J.,
1155 Bretagnon, M., 2019. *The CMEMS GlobColour chloro-
1156 phyll a product based on satellite observation: multi-
1157 sensor merging and flagging strategies*. Ocean Sci. 15
1158 (3), 819–830.
1159 <https://doi.org/10.5194/os-15-819-2019>

1160 Grunseich, G., Subrahmanyam, B., Murty, V.S.N., Giese, B.S.,
1161 2011. *Sea surface salinity variability during the Indian
1162 Ocean Dipole and ENSO events in the tropical Indian
1163 Ocean*. J. Geophys. Res.-Oceans 116 (C11).
1164 <https://doi.org/10.1029/2011JC007456>

1165 Hankin, S., Harrison, D.E., Osborne, J., Davison, J., O'Brien,
1166 K., 1996. *A strategy and a tool, Ferret, for closely inte-
1167 grated visualization and analysis*. J. Visualizat. Com-
1168 puter Animat. 7 (3), 149–157.
1169 [https://doi.org/10.1002/\(SICI\)1099-1778\(199607\)7:3<149::AID-VIS148>3.0.CO;2-X](https://doi.org/10.1002/(SICI)1099-1778(199607)7:3<149::AID-VIS148>3.0.CO;2-X)
1170

1171 Heil, C.A., Glibert, P.M., Al-Sarawi, M.A., Faraj, M., Behbe-
1172 hani, M., Husain, M., 2001. *First record of a fish-killing
1173 Gymnodinium sp. bloom in Kuwait Bay, Arabian Sea:
1174 chronology and potential causes*. Mar. Ecol. Prog. Ser.
1175 214, 15–23.
1176 <https://doi.org/10.3354/meps>

1177 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi,
1178 A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R.,
1179 Schepers, D., Simmons, A., 2020. *The ERA5 global re-
1180 analysis*. Q. J. Roy. Meteor. Soc. 146 (730), 1999–2049.
1181 <https://doi.org/10.1002/qj.3803>

1182 Hussein, K.A., Al Abdouli, K., Ghebreyesus, D.T., Petchpray-
1183 oon, P., Al Hosani, N., O. Sharif, H., 2021. *Spatiotempo-
1184 ral variability of chlorophyll a and sea surface tempera-
1185 ture, and their relationship with bathymetry over the
1186 coasts of the UAE*. Remote Sens-Basel. 13 (13), 2447.
1187 <https://doi.org/10.3390/rs13132447>

1188 Ismail, K.A., Al Shehhi, M.R., 2022. *Upwelling and nutrient
1189 dynamics in the Arabian Gulf and Sea of Oman*. Plos
1190 One 17 (10), e0276260.
1191 <https://doi.org/10.1371/journal.pone.0276260>

1192 Jensen, T.G., 2007. *Wind-driven response of the northern In-
1193 dian Ocean to climate extremes*. J. Clim. 20 (13),
1194 2978–2993.
1195 <https://doi.org/10.1175/JCLI4150.1>

1196 Johns, W., Yao, F., Olson, D., Josey, S., Grist, J., Smeed, D.,
1197 2003. *Observations of seasonal exchange through the St-
1198 rait of Hormuz and the inferred heat and freshwater bu-
1199 dget of the Persian Gulf*. J. Geophys. Res.-Oceans 108
1200 (C12).
1201 <https://doi.org/10.1029/2003JC001881>

1202 Kämpf, J., Sadrinasab, M., 2006. *The circulation of the Per-
1203 sian Gulf: a numerical study*. Ocean Sci. 2 (1), 27–41.
1204 <https://doi.org/10.5194/os-2-27-2006>

1205 Kendall, M., 1975. *Rank Correlation Methods*, 4th edn.,
1206 Charles Griffin, London, 202 pp.

1207 Keshavarzifard, M., Vazirzadeh, A., Sharifinia, M., 2021. *Oc-
1208 currence and characterization of microplastics in white
1209 shrimp, Metapenaeus affinis, living in a habitat highly
1210 affected by anthropogenic pressures, northwest Persian
1211 Gulf*. Mar. Pollut. Bull. 169, 112581.
<https://doi.org/10.1016/j.marpolbul.2021.112581>

1212 Kim, H-J., Miller, A.J., McGowan, J., Carter, M.L., 2009. *Coastal
1213 phytoplankton blooms in the Southern California Bight*.
1214 Prog. Oceanogr. 82 (2), 137–147.
<https://doi.org/10.1016/j.pocean.2009.05.002>

1215 Lachkar, Z., Pauluis, O., Paparella, F., Khan, B., Burt, J. A.,
1216 2025. *Local and remote Climatic drivers of extreme
1217 summer temperatures in the Arabian Gulf*. EGUsphere,
1218 2025, 1–30.
<https://doi.org/10.5194/egusphere-2025-2948>

1219 Mahmoodi, K., Ghassemi, H., Razminia, A., 2019. *Temporal
1220 and spatial characteristics of wave energy in the Persian
1221 Gulf based on the ERA5 reanalysis dataset*. Energy 187,
1222 115991.
<https://doi.org/10.1016/j.energy.2019.115991>

1223 Maritorena, S., d'Andon, O.H.F., Mangin, A., Siegel, D.A.,
1224 2010. *Merged satellite ocean color data products us-
1225 ing a bio-optical model: Characteristics, benefits, and
1226 issues*. Remote Sens. Environ. 114 (8), 1791–1804.
<https://doi.org/10.1016/j.rse.2010.04.002>

1227 Moradi, M., 2020. *Trend analysis and variations of sea sur-
1228 face temperature and chlorophyll a in the Persian Gulf*.
1229 Mar. Pollut. Bull. 156, 111267.
<https://doi.org/10.1016/j.marpolbul.2020.111267>

1230 Moradi, M., 2021. *Evaluation of merged multi-sensor ocean-
1231 color chlorophyll products in the Northern Persian Gulf*.
1232 Cont. Shelf Res. 221, 104415.
<https://doi.org/10.1016/j.csr.2021.104415>

1233 Moradi, M., Kabiri, K., 2015. *Spatio-temporal variability of
1234 SST and Chlorophyll a from MODIS data in the Persian
1235 Gulf*. Mar. Pollut. Bull. 98 (1–2), 14–25.
<https://doi.org/10.1016/j.marpolbul.2015.07.018>

1236 Moradi, M., Moradi, N., 2020. *Correlation between concen-
1237 trations of chlorophyll a and satellite derived climatic
1238 factors in the Persian Gulf*. Mar. Pollut. Bull. 161,
1239 111728.
<https://doi.org/10.1016/j.marpolbul.2020.111728>

1240 Mussa, A.A., Aboobacker, V.M., Abdulla, C.P., Hasna, V.M.,
1241 Al-Ansari, E.M.A.S., Vethamony, P., 2024. *A climatolog-
1242 ical overview of surface currents in the Arabian Gulf
1243 with special reference to the Exclusive Economic Zone
1244 of Qatar*. Int. J. Climatol. 44(13), 4677–4693.
<https://doi.org/10.1002/joc.8603>

1245 Nelli, N., Francis, D., Fonseca, R., Bosc, E., Addad, Y., Temimi,
1246 M., Abida, R., Weston, M., Cherif, C., 2022. *Charac-
1247 terization of the atmospheric circulation near the Empty
1248 Quarter Desert during major weather events*. Front.
1249 Environ. Sci. 10, p. 972380.
<https://doi.org/10.3389/fenvs.2022.972380>

1250 Nezlin, N.P., Polikarpov, I.G., Al-Yamani, F.Y., Rao, D.S., Ig-
1251 natov, A.M., 2010. *Satellite monitoring of climatic fac-
1252 tors regulating phytoplankton variability in the Arabian
1253 (Persian) Gulf*. J. Mar. Syst. 82 (1–2), 47–60.
<https://doi.org/10.1016/j.jmarsys.2010.03.003>

1254 Niranjan Kumar, K., Ouarda, T., 2014. *Precipitation vari-
1255 ability over the UAE and global SST teleconnections*.
1256 J. Geophys. Res.-Atmos. 119 (17), 10,313–10,322.
<https://doi.org/10.1002/2014JD021724>

1257 Pitarch, J., Volpe, G., Colella, S., Krasemann, H., Santoleri, R.,
1258 2016. *Remote sensing of chlorophyll in the Baltic Sea
1259 at basin scale from 1997 to 2012 using merged multi-
1260 sensor data*. Ocean Sci. 12 (2), 379–389.
<https://doi.org/10.5194/os-12-379-2016>

1261 Polikarpov, I., Saburova, M., Al-Yamani, F., 2016. *Diversity
1262 and distribution of winter phytoplankton in the Arabian
1263 Gulf and the Sea of Oman*. Cont. Shelf Res. 119, 85–99.
<https://doi.org/10.1016/j.csr.2016.03.009>

1264 Pous, S., Lazure, P., Carton, X., 2015. *A model of the gen-
1265 eral circulation in the Persian Gulf and in the Strait of
1266 Hormuz: Intraseasonal to interannual variability*. Cont.
1267 Shelf Res. 94, 55–70.
<https://doi.org/10.1016/j.csr.2014.12.008>

1268 Pramall, S., Jackson, J. M., Konik, M., Costa, M., 2023. *Merged
1269 multi-sensor ocean colour chlorophyll product evalua-
1270 tion for the British Columbia coast*. Remote Sens.-Basel.
1271 15 (3), 687.
<https://doi.org/10.3390/rs15030687>

1272 Price, A.R.G., Sheppard, C.R.C., Roberts, C.M., 1993. *The
1273 Gulf: its biological setting*. Mar. Pollut. Bull. 27, 9–15.
[https://doi.org/10.1016/0025-326X\(93\)90004-4](https://doi.org/10.1016/0025-326X(93)90004-4)

1274 Privett, D., 1959. *Monthly charts of evaporation from the
1275 N. Indian Ocean (including the Red Sea and the Persian
1276 Gulf)*. Q. J. Roy. Meteor. Soc. 85 (366), 424–428.
<https://doi.org/10.1002/qj.49708536614>

1277 R Core Team, 2023. *R: A Language and Environment for Sta-
1278 tistical Computing*. R Foundation for Statistical Com-
1279 puting, Vienna, Austria.
<https://www.R-project.org/>

1280 Racault, M-F, Sathyendranath, S., Menon, N., Platt, T., 2017.
1281 *Phenological responses to ENSO in the global oceans*.
1282 Surv. Geophys. 38, 277–293.
<https://doi.org/10.1007/s10712-016-9391-1>

1283 Rafati, P. and Rezazadeh, M., 2020. *Correlation of NAO, IOD,
1284 and ENSO with the sea surface temperature changes in
1285 the Persian Gulf*. J. Earth Space Phys. 46 (2), 395–408.
<https://doi.org/10.22059/jesphys.2020.297756.100>

1286 7198

1287 Raitsos, D.E., Yi, X., Platt, T., Racault, M.F., Brewin, R.J., Prad-
1288 han, Y., Papadopoulos, V.P., Sathyendranath, S., Hoteit,
1289 I., 2015. *Monsoon oscillations regulate the fertility of
1290 the Red Sea*. Geophys. Res. Lett. 42 (3), 855–862.
<https://doi.org/10.1002/2014GL062882>

1314 Rajendran, S., Al-Naimi, N., Al Khayat, J.A., Sorino, C.F.,
 1315 Sadooni, F.N., Al Kuwari, H.A.S., 2022. *Chlorophyll a*
 1316 concentrations in the Arabian Gulf waters of the arid
 1317 region: A case study from the northern coast of Qatar.
 1318 Regional Stud. Marine Sci. 56, 102680.
 1319 <https://doi.org/10.1016/j.rsma.2022.102680> 1369

1320 Rakib, F., Al-Ansari, E.M.A.S., Husrevoglu, Y.S., Yigiterhan,
 1321 O., Al-Maslamani, I., Aboobacker, V.M., Vethamony, P.,
 1322 2021. *Observed variability in physical and biogeochemical*
 1323 *parameters in the central Arabian Gulf.* Oceanologia
 1324 63 (2), 227–237.
 1325 <https://doi.org/10.1016/j.oceano.2020.12.003> 1370

1326 Rao, S., Al-Yamani, F., 1998. *Phytoplankton ecology in the*
 1327 *waters between Shatt Al-Arab and Straits of Hormuz,*
 1328 *Arabian Gulf: A review.* Plankton Biol. Ecol. 45 (2),
 1329 101–116. 1371

1330 Reynolds, R.M., 1993. *Physical oceanography of the Gulf,*
 1331 *Strait of Hormuz, and the Gulf of Oman—Results from*
 1332 *the Mt Mitchell expedition.* Mar. Pollut. Bull. 27, 35–59.
 1333 [https://doi.org/10.1016/0025-326X\(93\)90007-7](https://doi.org/10.1016/0025-326X(93)90007-7) 1372

1334 Ross, D.A., Uchupi, E., White, R.S., 1986. *The geology of*
 1335 *the Persian Gulf-Gulf of Oman region: A synthesis.* Rev.
 1336 Geophys. 24 (3), 537–556.
 1337 <https://doi.org/10.1029/RG024i003p00537> 1373

1338 Roxy, M.K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S.,
 1339 Prasanna Kumar, S., Ravichandran, M., Vichi, M., Lévy,
 1340 M., 2016. *A reduction in marine primary productivity*
 1341 *driven by rapid warming over the tropical Indian Ocean.*
 1342 Geophys. Res. Lett. 43 (2), 826–833.
 1343 <https://doi.org/10.1002/2015GL066979> 1374

1344 Saad, M.A., 1978. *Seasonal variations of some physicochemical*
 1345 *conditions of Shatt al-Arab estuary, Iraq.* Estuar. Coast. Mar. Sci. 6 (5), 503–513.
 1346 [https://doi.org/10.1016/0302-3524\(78\)90027-0](https://doi.org/10.1016/0302-3524(78)90027-0) 1375

1347 Saha, K., Zhao, X., Zhang, H., Casey, K.S., Zhang, D., Baker-Yeboah, S., Kilpatrick, K.A., Evans, R.H., Ryan, T., Relph, J.M., 2018. *AVHRR Pathfinder version 5.3 level 3 collated (L3C) global 4km sea surface temperature for 1981 – Present.* NOAA Nat. Center. Environ. Informat., Asheville, NC, USA. 1376

1348 Schulzweida, U., 2023. *CDO User Guide (2.3.0).* Zenodo.
 1349 <https://doi.org/10.5281/zenodo.10020800> 1377

1350 Seelanki, V., Nigam, T., Pant, V., 2022. *Unravelling the roles*
 1351 *of Indian Ocean Dipole and El-Niño on winter primary*
 1352 *productivity over the Arabian Sea.* Deep-Sea Res. Pt. I
 1353 190, 103913.
 1354 <https://doi.org/10.1016/j.dsr.2022.103913> 1378

1355 Sen, P.K., 1968. *Estimates of the regression coefficient based*
 1356 *on Kendall's tau.* J. Am. Stat. Assoc. 63 (324),
 1357 1379–1389.
 1358 <https://doi.org/10.1080/01621459.1968.10480934> 1379

1359 Shafeeqe, M., Balchand, A.N., Shah, P., George, G., Smitha,
 1360 B.R., Varghese, E., Joseph, A.K., Sathyendranath, S., Platt,
 1361 T., 2021a. *Spatio-temporal variability of chlorophyll a*
 1362 *in response to coastal upwelling and mesoscale eddies*
 1363 *in the South Eastern Arabian Sea.* Int. J. Remote Sens.
 1364 42 (13), 4836–4863.
 1365 <https://doi.org/10.1080/01431161.2021.1899329> 1380

1366 Shafeeqe, M., George, G., Akash, S., Smitha, B.R., Shah,
 1367 P., Balchand, A.N., 2021b. *Interannual variability of*
 1368 *chlorophyll a and impact of extreme climatic events in*
 1369 *the South Eastern Arabian Sea.* Regional Stud. Marine
 1370 Sci. 48, 101986.
 1371 <https://doi.org/10.1016/j.rsma.2021.101986> 1372

1372 Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F.,
 1373 Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy,
 1374 N.K., Durvasula, S.R.V., Jones, D.A., 2010. *The Gulf:*
 1375 *a young sea in decline.* Mar. Pollut. Bull. 60 (1), 13–38.
 1376 <https://doi.org/10.1016/j.marpolbul.2009.10.017> 1377

1377 The MathWorks Inc., 2024. *MATLAB version: 24.2.0*
 1378 (*R2024b*), The MathWorks Inc., Natick, Massachusetts,
 1379 <https://www.mathworks.com> 1380

1380 Thoppil, P.G., Hogan, P.J., 2010. *Persian Gulf response to*
 1381 *a wintertime shamal wind event.* Deep-Sea Res. Pt. I
 1382 57 (8), 946–955.
 1383 <https://doi.org/10.1016/j.dsr.2010.03.002> 1384

1384 Tomlinson, M.C., Wynne, T.T., Stumpf, R.P., 2009. *An evalua-*
 1385 *tion of remote sensing techniques for enhanced detec-*
 1386 *tion of the toxic dinoflagellate, Karenia brevis.* Remote
 1387 Sens. Environ. 113 (3), 598–609.
 1388 <https://doi.org/10.1016/j.rse.2008.11.003> 1389

1389 Vantrepotte, V., Mélin, F., 2009. *Temporal variability of*
 1390 *10-year global SeaWiFS time-series of phytoplankton*
 1391 *chlorophyll a concentration.* ICES J. Mar. Sci. 66 (7),
 1392 1547–1556.
 1393 <https://doi.org/10.1093/icesjms/fsp107> 1394

1394 Vaughan, G.O., Al-Mansoori, N., Burt, J.A., 2019. *The Ara-*
 1395 *bian Gulf. World Seas: An Environmental Evaluation.*
 1396 Elsevier, 1–23.
 1397 <https://doi.org/10.1016/B978-0-08-100853-9.00001-4> 1398

1398 Veny, M., Aguiar-González, B., Marrero-Díaz, Á., Pereira-
 1399 Vázquez, T., Rodríguez-Santana, Á., 2024. *Biophysical*
 1400 *coupling of seasonal chlorophyll a bloom variations and*
 1401 *phytoplankton assemblages across the Peninsula Front*
 1402 *in the Bransfield Strait.* Ocean Sci. 20 (2), 389–415.
 1403 <https://doi.org/10.5194/os-20-389-2024> 1404

1404 Volpe, G., Colella, S., Brando, V.E., Forneris, V., La Padula, F.,
 1405 Di Cicco, A., Sammartino, M., Bracaglia, M., Artuso, F.,
 1406 Santoleri, R., 2019. *Mediterranean Ocean Colour Level*
 1407 *3 operational multi-sensor processing.* Ocean Sci. 15
 1408 (1), 127–146.
 1409 <https://doi.org/10.5194/os-15-127-2019> 1410

1410 Westberry, T.K., Silsbe, G.M., Behrenfeld, M.J., 2023. *Gross*
 1411 *and net primary production in the global ocean: An*
 1412 *ocean color remote sensing perspective.* Earth-Sci. Rev.
 1413 237, 104322.
 1414 <https://doi.org/10.1016/j.earscirev.2023.104322> 1415

1415 Wiggert, J.D., Vialard, J., Behrenfeld, M.J., 2009. *Basin-wide*
 1416 *modification of dynamical and biogeochemical processes*
 1417 <https://doi.org/10.1016/j.earscirev.2009.07.002> 1418

1418

1424 by the positive phase of the Indian Ocean Dipole during
1425 the SeaWiFS era. Indian Ocean biogeochemical pro-
1426 cesses and ecological variability, 185, 385–407.
1427 <https://doi.org/10.1029/2008GM000776>

1428 Wright, J.L., 1974. *A hydrographic and acoustic survey of*
1429 *the Persian Gulf. Part I.* Naval Postgraduate School.
1430 <https://doi.org/10.5962/bhl.title.60916>

1431 Xi, H., Losa, S.N., Mangin, A., Soppa, M.A., Garnesson, P., De-
1432 maria, J., Liu, Y., d'Andon, O.H., Bracher, A., 2020. *Global*
1433 *retrieval of phytoplankton functional types based on em-*
1434 *pirical orthogonal functions using CMEMS GlobColour*
1435 *merged products and further extension to OLCI data.*
1436 *Remote Sens. Environ.* 240, 111704.
1437 <https://doi.org/10.1016/j.rse.2020.111704>

1438 Yu, S., Bai, Y., He, X., Gong, F., Li, T., 2023. *A new merged*
1439 *dataset of global ocean chlorophyll *a* concentration for*
1440 *better trend detection.* *Front. Marine Sci.* 10, 1051619.
1441 <https://doi.org/10.3389/fmars.2023.1051619>

In Press