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Abstract

The study examined the climatology, trends, and variability of chlorophyll a (hereafter referred to as ‘Chl a')
concentration in the Arabian Gulf (hereafter referred to as ‘Gulf’), utilizing merged satellite datasets for the period
1998-2022. Distinct spatial and temporal variabilities were identified, which are linked to climatic features, inflow from
the Arabian Sea, freshwater discharge into the Gulf, and the Gulf circulation. The study identified an opposing phase
in the dominance of Chl a between the southern Iranian coast and the Arabian coast. Among wind speed, sea level
anomaly, and sea surface temperature (SST), multiple linear regression analysis revealed SST as the strongest predictor
of phytoplankton growth. The La Nifia and positive Indian Ocean dipole (IOD) phases enhanced the Chl a, while El
Nifio and negative 10D phases caused its decline. The Chl a increased in the northern coast and southern shelf of the
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Gulf, of the order of 0.017-0.031 mg/m?3 /y, while the southern Iranian coast exhibited weaker negative trends.
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1. Introduction

Chlorophyll a (Chl a) serves as a vital pigment in photosyn-
thetic organisms, reflecting their abundance and primary
productivity levels in aquatic environments (Behrenfeld
and Falkowski, 1997). Remote sensing-based Chl a con-
centration data play a crucial role in monitoring and un-
derstanding marine ecosystems (Shafeeque et al., 2021a).
These observations provide valuable insights into phyto-
plankton dynamics, primary productivity, and ecosystem
health, which benefit studying climate change impacts, as-
sessing oceanic biogeochemical processes, identifying phy-
toplankton blooms, detecting harmful algal events, and
measuring the impact of environmental stressors on ma-
rine environments (Al-Naimi et al., 2017). Satellite remote
sensing methods have provided unprecedented global in-
sights into Chl a spatial and temporal distribution (Vantre-
potte and Mélin, 2009; Westberry et al., 2023; Xi et al,,
2020). Studies have elucidated the role of climatic phe-
nomena, including El Nifio and La Nina events, in driving
significant global variations in Chl g, affecting phytoplank-
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ton productivity patterns across different oceanic regions
(Currie et al,, 2013; Shafeeque et al., 2021b). Additionally,
research has indicated that global warming trends could
be altering ocean stratification, potentially leading to de-
creased nutrient upwelling and thus influencing global
Chl a (Gao etal., 2018).

The Arabian Gulf (hereafter ‘Gulf’) is one of the most
biologically and geologically distinct marine environments
in the world (Price et al.,, 1993; Ross et al., 1986; Sheppard
et al,, 2010). Geographically, the Gulf is bordered by Saudi
Arabia, Kuwait, Iraq, Iran, Qatar, the United Arab Emirates,
and Oman. The Gulfis an important body of water for inter-
national trade and energy resources and has geopolitical
significance in the region. Its uniqueness, including semi-
enclosed nature, extreme salinity levels, high-temperature
variations, and limited freshwater input, makes itan impor-
tant region for studying marine processes under extreme
conditions. The Gulf’s waters support diverse and econom-
ically important marine ecosystems, including coral reefs,
seagrass beds, and fisheries, which are under increasing
stress due to anthropogenic activities and climate change
(Keshavarzifard et al.,, 2021; Vaughan et al,, 2019). The
Gulf experiences extreme conditions with a hot and arid
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climate, excess evaporation over precipitation, elevated
temperatures, and high salinity levels (Aboobacker et al.,
2024a; Al-Ansari et al,, 2022; Elobaid et al., 2022; Rakib et
al,, 2021; Reynolds, 1993), which significantly influence
phytoplankton community structure and productivity (Al-
Said etal.,, 2017; Polikarpov et al., 2016; Rao and Al-Yamani,
1998). The estimated residence time of the Gulf water is
3-5 years with an inflow of 2696 km3/y and an outflow of
2375 km?3/y (Reynolds, 1993). The circulation is mainly
driven by winds, density gradients, and the water exchange
with the Indian Ocean that occurs through the Strait of
Hormuz (Kampf and Sadrinasab, 2006; Mussa et al., 2024;
Thoppil and Hogan, 2010). The major components of sur-
face circulations are the northwestward-flowing Iranian
Coastal Current (ICC) and the southeastward-flowing Ara-
bian Coastal Current (ACC), while the density-driven deep
currents flow towards the southeast from the northern
Gulf to the Sea of Oman through the Strait of Hormuz.

The variability of Chl a in the Gulf is characterized by
unique hydrographic, geomorphological, and ecological
conditions. In addition, anthropogenic effects may result in
high levels of Chl @ and lead to eutrophication in Gulf coasts
(Al-Yamani et al,, 2020; Devlin et al., 2019). In Kuwait wa-
ters, Chl a was analyzed using in situ observations and
discussed the local seasonal variations and the impact of
anthropogenic activities (Al-Yamani et al.,, 2020). Al-Thani
et al. (2023) evaluated the physical parameters that con-
trol the Chl a distribution in the Exclusive Economic Zone
(EEZ) of Qatar and analyzed the spatio-temporal variability
using in situ measurements from various transects. Ne-
zlin et al. (2010) utilized SeaWiFS data (1996-2009) and
reported that Chl a levels in the Gulf are significantly influ-
enced by local meteorological and oceanographic factors,
including vertical stratification, precipitation, and aeolian
dust transport. Similarly, Moradi (2020) and Bordbar et al.
(2024) utilized MODIS data and reported that sea surface
temperature (SST) and winds influence Chl a variability in
the Gulf. Given the Gulf’s strategic importance as a global
oil hub and its proximity to densely populated coastal re-
gions, a detailed understanding of the patterns and drivers
of Chl a distribution is essential for predicting and miti-
gating the impacts of human activities on marine ecosys-
tems. Our research leveraged the longest available satellite
dataset of Chl a for the Gulf to conduct a detailed investi-
gation of the spatiotemporal distribution of Chl a in the
Gulf. The study also discussed the relationships between
observed Chl a distribution and global climate oscillations.
This study enhances the temporal resolution and spatial
coverage of the analysis, providing a more comprehensive
understanding of Chl a dynamics over an extended period.

To quantify the impact of various environmental pa-
rameters on Chl g, this study employs multiple linear re-
gression analysis, a sophisticated statistical technique that
allows for the examination of the relationship between mul-
tiple independent variables and the dependent variable
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(Chl a). To understand the potential influence of global cli-
matic oscillations on the observed Chl a pattern, we have
investigated the impact of El Nifio-Southern Oscillation
(ENSO), Indian Ocean Dipole (I0D), and North Atlantic
Oscillation (NAO). These events are known for impacting
many of the marine ecosystems of the World Ocean (Currie
etal,, 2013; Racault et al.,, 2017; Shafeeque et al,, 2021b)
and have influenced the Gulf ecosystem by altering SST,
wind patterns, nutrient upwelling, etc., which in turn in-
fluence Chl a (Aboobacker et al., 2021b; Al Senafi, 2022;
Al-Subhi and Abdulla, 2021; Niranjan Kumar and Ouarda,
2014). The sections in this paper are arranged as follows:
Section 2 describes the study area and its features; the ma-
terial and methods are described in Section 3, results are
discussed in Section 4, and the findings are summarized
in the final section.

2. Study area

The Gulf, situated between 47.5°E-56.5°E and 23.5°N-
30.5°N, encompasses an area of approximately 241,000
km?. This semi-enclosed marginal sea of the Indian Ocean
stretches about 1,000 km in length, with its width varying
from 56 km at its narrowest point in the Strait of Hor-
muz to 338 km at its widest. The Gulf is characterized
by its shallow nature, with an average depth of 36 m, al-
though it reaches a maximum depth of 110 m in the Strait
of Hormuz. The Gulf’s bathymetry features a southward
widening channel that extends from the Strait of Hormuz
across a series of sills and shallow basins to the shelf edge
(Elobaid etal., 2022; Kdmpfand Sadrinasab, 2006). Tectonic-
driven subsidence has resulted in a deeper seafloor on the
southern part of the Strait, forming a 70-95 m deep trough
along the Iranian coast in the eastern part of the Gulf. This
asymmetry is further emphasized by the presence of a shal-
low bank area (depth < 20 m) in the southwestern Gulf,
contrasting with a deeper area in the Iranian waters. The
narrow Strait of Hormuz plays a crucial role in restricting
water exchange between the Gulf and the northern Indian
Ocean.

The region experiences distinctive wind patterns, with
the northwesterly Shamal being the dominant wind sys-
tem. Other significant wind types include the northeast-
erly/easterly Nashi winds and the southeasterly/southerly
Kaus winds (Aboobacker et al., 2021a). The Gulf’s surface
circulation is dominated by ICC and ACC, with the ICC ex-
hibiting relatively stronger flows compared to the ACC.
Seasonal variations in current speeds are evident, with
summer currents generally stronger than winter currents.
The Gulf experiences its strongest currents during May and
June. Additionally, prominent eddies are observed in both
winter and summer seasons, contributing to the complex
circulation patterns within the Gulf (Mussa et al., 2024).

The primary freshwater input comes from the Shatt-Al-
Arab river system in the north, fed by the Euphrates, Tigris,
and Karun rivers. Historically, the annual mean discharge

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

142

143

144

145

146

147

148

149

150

151

152



153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Chlorophyll a distribution in the Arabian Gulf: climate, trends, and global teleconnections

of the Shatt-Al-Arab was between 35 km3/y (Johns et al.,
2003; Saad, 1978) to 45 km3 /y (Wright, 1974). However,
this discharge has been substantially reduced over the
years due to extensive dam construction upstream. More
recent measurements indicate a discharge of 40-70 m3/s
(Alosairi and Pokavanich, 2017), which is equivalent to
approximately 1.26-2.21 km3/y. A key hydrological char-
acteristic of the Gulf is its high evaporation rate, estimated
at approximately 2 m/y per unit surface area (Ahmad and
Sultan, 1991; Privett, 1959), which significantly exceeds
both precipitation and river discharge (Johns et al., 2003).
The Gulf’s unique hydrodynamics are characterized by a re-
verse estuarine circulation, primarily driven by excessive
evaporation. This circulation pattern results in a dense bot-
tom outflow that follows the southern coastline, while an
inflow of Indian Ocean Surface Water (I0SW) moves along
the Iranian coastline (Johns et al., 2003; Reynolds, 1993).
The geographical location of the study area is shown in
Figure 1. For a detailed analysis of variability in the Gulf,
we have selected five locations as shown in Figure 1. The
selected locations (P1-P5) were chosen to be representa-
tive of the major coastal regions and Chl a dynamics within
the Gulf. P1 represents the northern Gulf and the region
of Shatt Al-Arab river discharge; P2 and P3 represent the
Arabian coast of the Gulf; P4 and P5 represent the Iranian
coast of the Gulf. By including these locations, we aimed
to capture the major spatial patterns and drivers of Chl a
variability across the Gulf. As indicated, the selection was
based on examining the climatology of annual mean and
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seasonal mean Chl a, the variations are assessed and based
on these results, the stations are selected for detailed dis-
cussion, in such a way that the stations cover the general
features of Iranian and Arabian coasts.

3. Data and methods

3.1 Data

3.1.1 Chlorophyll a

This study utilizes the GlobColour Chl a concentrations ob-
tained from the Copernicus Marine Environment Monitor-
ing Service (CMEMS) database, with the product ID: https:
//data.marine.copernicus.eu/product/OCEANCOLOUR_
GLO_BGC_L4_MY_009_104/services (last accessed on 1
December 2024; https://data.marine.copernicus.eu/prod
uct/OCEANCOLOUR_GLO:BGC_L4_MY_009_104/services;
DOI: https://doi.org/10.48670/moi-00281). This is
a composite product derived from the integration of mul-
tiple satellite sensors, including SeaWiFS, MODIS, MERIS,
VIIRS-SNPP&JPSS1, and OLCI-S3A&S3B (Veny et al,, 2024).
By merging data from these various sensors, the product
ensures a high level of accuracy and consistency in the Chl a
measurement. The dataset features a fine spatial resolu-
tion of 0.04° X 0.04°, which allows for detailed mapping of
Chl a in the Gulf. Moreover, the dataset was updated daily,
providing a temporal resolution that supports continuous
monitoring and analysis of oceanographic conditions. For
this study, monthly Chl a concentrations were extracted
for the period 1998-2022.

Depth (m)
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Figure 1. Study area. The selected stations for time series analysis are marked with red dots.
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3.1.2 Wind

ERAS, the fifth generation of global climate and weather
reanalysis produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF), offers a comprehen-
sive dataset that spans from 1940 to the present, providing
extensive temporal coverage for climate and weather re-
search (Hersbach et al., 2020). ERA5 winds are available
at a horizontal resolution of 0.25° X 0.25° and for temporal
resolutions of hourly, daily, and monthly, offering detailed
spatial and temporal insights into wind patterns. In this
study, we downloaded the monthly winds in the Gulf for the
period 1998-2022 (https://cds.climate.copernicus.eu/da
tasets/reanalysis-era5-single-levels-monthly-means?tab
=overview; last accessed on 1 December 2024). This data
has been used to delineate its role on the Chl a distribution
in the Gulf. Earlier, ERA5 winds along the coast of Qatar
were verified and utilized for the wind energy resource
assessment (Aboobacker et al,, 2021b). Additionally, ERA5
winds were validated in the Gulf against the observations
from the oceanographic buoys (Mahmoodi et al., 2019).

3.1.3 Sea Surface Temperature

SST datasets employed in this study were derived from
the Advanced Very High-Resolution Radiometer (AVHRR)
Pathfinder Version 5, available from NASA’'s Physical

Oceanography Distributed Active Archive Center (PO.DAAC).

AVHRR, a space-borne sensor, has been instrumental in
measuring SST by detecting thermal infrared radiation
emitted by the ocean surface. This technique allows for
accurate and reliable temperature measurements, essen-
tial for understanding various oceanographic and climatic
processes (https://podaac.jpl.nasa.gov/dataset/, last
accessed on 1 December 2024; Saha et al,, 2018). The
Pathfinder SST provides daily daytime observations at
a high horizontal resolution of 0.04° X 0.04°, enabling de-
tailed spatial analysis of sea surface temperature variations
across the globe. The AVHRR Pathfinder SST dataset offers
continuous temporal coverage, which is crucial for moni-
toring both short-term and long-term changes in SST. This
dataset is particularly valuable for its consistency and accu-
racy, achieved through rigorous calibration and validation
processes. The AVHRR SST data are available from 1981
to the present, from daily to monthly time scales. In this
study, we used the monthly AVHRR SST during 1998-2022
to analyze how SST variations within the Gulf affect the
Chl a change.

3.1.4 Sea Level Anomaly

Sea Level Anomaly (SLA) datasets utilized in this study
were sourced from AVISO (Archiving, Validation, and In-
terpretation of Satellite Oceanographic data) through the
Copernicus Marine Environment Monitoring Services
(CMEMS). The product (ID: SEALEVEL_GLO_PHY_L4_MY_0
08_047) provides high-quality SLAs derived from multiple
altimeter missions, including TOPEX/Poseidon, Jason-1,
Jason-2, Jason-3, Envisat, ERS-1, ERS-2, and SARAL/AltiKa,
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among others (https://data.marine.copernicus.eu/pr
oduct/SEALEVEL_GLO_PHY_L4_MY_008_047/services;
Chinta et al,, 2024). It is crucial for understanding sea level
variations and their implications. The data is for a horizon-
tal resolution of 0.25° X 0.25° and a temporal resolution
of daily and monthly from 1993 to the present. We used
monthly SLA during 1998-2022 to understand the role of
SLA on Chl a within the Gulf (last accessed on 1 December
2024).

3.2 Methods

3.2.1 Muiltiple linear regression

Multiple linear regression analysis was carried out with
Chl a as the dependent variable, and SST, SLA, and wind
speed as independent variables. We used box-averaged
data for all the selected point locations. This analysis eval-
uates how multiple independent variables influence a de-
pendent variable simultaneously. It quantifies the individ-
ual impact of each independent variable on the dependent
variable while controlling for the effects of other variables
included in the model, as represented in Equation (1).

Vi = Bo+B1Xi1 + Boxiz+ ..+ Bhyik +€;, i=1,2,...,n (1)

where £, 1, f» represents the random error, allowing
each response to deviate from the average value of y. These
errors are presumed to be independent, with a mean of
zero and a common variance (¢2) and follow a normal
distribution.

3.2.2 Long-term linear trend

The trend analysis and significance test of the observed
trends were conducted using Sen’s slope estimator (Sen,
1968) and the Mann-Kendall test (Kendall, 1975), respec-
tively. These statistical methods are robust and widely
used in environmental and climatic studies to identify and
quantify trends in time series data. Sen’s slope estimator
is a non-parametric method used to determine the magni-
tude of a trend. Sen’s slope is calculated as the median of
the slopes of all possible pairs of data points, providing a re-
liable estimate of the true slope of the trend (Sen, 1968).
The Mann-Kendall test is a non-parametric test used to
assess the significance of a trend in a time series. This test
evaluates the null hypothesis that there is no trend against
the alternative hypothesis that a trend exists. It is based
on the ranks of the data rather than the actual values, mak-
ing it robust against non-normal distributions and missing
values (Kendall, 1975).

3.2.3 Composite analysis

To examine the typical Chl a response to specific climate
events, we performed a composite analysis. For each cli-
mate index (ENSO, IOD, and NAO), we first identified years
corresponding to specific phases (e.g., El Nifio, La Nifia, pos-
itive 10D, negative 10D, positive NAO, and negative NAO).
Then, for each event phase, we extracted the annual mean
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Table 1. Coordinates of the sampling stations.

Station Latitude Longitude
N 25.299°N 51.521°E
S1 25.310°N 51.542°E
S2 25.350°N 51.554°E
S3 25.320°N 51.583°E
S4 25.322°N 51.627°E
S5 25.283°N 51.646°E
S6 25.321°N 51.676°E
S7 25.294°N 51.708°E
S8 25.408°N 51.645°E
S9 25.383°N 51.570°E
S10 25.435°N 51.563°E

Chl a values for the Gulf during those years and calculated
the composite mean. This involved averaging the annual
mean Chl a values across all years identified for that spe-
cific event phase. By aggregating data from multiple years
of the same event, the composite analysis aims to reduce
the influence of interannual variability and highlight the
characteristic spatial and temporal patterns in Chl a asso-
ciated with each climate mode, which might be unnoticed
while analyzing individual years.

For the data analysis and visualization presented in this
paper, the following software and tools were employed:
FERRET (Hankin et al., 1996), CDO (Schulzweida, 2023), R
(R Core Team, 2023), and MATLAB (The MathWorks Inc.,
2024).

4. Results and discussion

4.1 Verification of GlobColour Chl a
The GlobColour project employs a comprehensive valida-
tion approach, comparing merged sensor products with
in situ measurements to assess their accuracy and con-
sistency (Garnesson et al.,, 2025). The global 4 km Glob-
Colour product demonstrates a good relationship between
satellite-derived Chl a and in situ measurements, with a co-
efficient of determination (R?) of 0.75 for daily data. The
cloud-free (interpolated) product shows a slight degrada-
tion but still achieves an R? of 0.71 (Garnesson et al., 2025,
see Table 3). These statistics, based on many available in
situ measurements, demonstrate the quality of the Glob-
Colour product for a wide range of applications (Garnesson
etal,, 2025). The utility of GlobColour data for studying
Chl a and primary productivity is well-established, with
applications spanning diverse ocean basins and including
studies of the adjacent Mediterranean Sea, demonstrating
its relevance to the Gulf (El Hourany et al., 2019; Ford and
Barciela, 2017; Ford et al,, 2012; Maritorena et al., 2010;
Pramlall et al,, 2023; Pitarch et al., 2016; Yu et al.,, 2023).
The accuracy of GlobColour Chl a data within the Qatar
waters has been verified against available in situ data col-
lected using CTD at 11 stations, encompassing both coastal
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and offshore areas of Doha (as detailed in Table 1). Data
from December 2021, June 2022, and March 2023, were
used for comparison. The findings, summarized in
Table 2 indicate that GlobColour Chl a values align rea-
sonably well with in situ measurements, although there
is a slight overestimation at lower concentrations. For in-
stance, in December, the mean (maximum) Chl a recorded
by GlobColour was 1.18 mg/m?3 (1.65 mg/m?), while in situ
measurements were slightly lower at 1.15 mg/m3 (1.88
mg/m3). Nonetheless, the limitations in the availability
of in situ data in the Gulf lack a comprehensive overview
of the validation of CMEMS Chl a data. However, this data
has been validated against in situ measurements in other
areas quite satisfactorily (Amorim et al., 2024; Garnesson
etal, 2019; Moradi, 2021; Volpe et al.,, 2019).

Several studies have successfully utilized satellite data-
sets to analyze Chl a variability in the Gulf. Forinstance, Ne-
zlin et al. (2010) employed MODIS and SeaWiFS datasets,
demonstrating their usefulness in assessing regional Chl a
patterns. Moradi and Kabiri (2015) further explored MODIS
data, corroborating its effectiveness in capturing Chl a dy-
namics. ‘Alosairi et al. (2019) expanded on these find-
ings by incorporating both MODIS and VIIRS data, pro-
viding a comprehensive view of Chl a variability. Simi-
larly, the utilization of MODIS data has been noted by other
researchers, also highlighting its widespread acceptance
and effectiveness in monitoring Gulf waters (Hussein et al,,
2021; Moradi and Moradi, 2020). These studies confirm
the reliability of satellite-derived Chl a data, supporting its
application in understanding and managing marine ecosys-
tems in the Gulf despite the limited in situ measurements
available for direct validation.

4.2 Annual mean Chl a features

Analysis of annual mean Chl a in the Gulf reveals notable
spatial variations. The annual mean Chl a along the north-
ern Iranian coast is relatively lower than that along the
Arabian coast (Figure 2). In the nearshore of the northern
Iranian coast, the Chl ais 1 to 1.5 mg/m?3, suggesting lesser
nutrient input from the surrounding areas or different hy-
drodynamic conditions that affect nutrient distribution
and phytoplankton activity. The spatial average of annual
mean Chl a over the Gulf is 1.1 mg/m3. About 56% of the
Gulf, encompassing mostly offshore waters, has an annual
mean Chl a of less than 1 mg/m3, whereas 38% of the re-
gion has a concentration between 1 to 2 mg/m3, and 5%
between 2 to 3 mg/m3. A strong nearshore-offshore gra-
dient in Chl a is identified along the coastal regions. This
pattern is particularly pronounced along the Arabian coast,
where the Chl a is reduced from 2 mg/m? in the nearshore
to less than 1 mg/m? in the offshore. Such decrements
are quite common and are influenced by various factors,
including the processes that make nutrients available in
the surface layer, which fosters phytoplankton intensity
close to the coast (Anjaneyan et al., 2023; Dai et al,, 2023;
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Table 2. The GlobColour observations of Chl a against in situ data.
Date GlobColour in situ
Range) Mean Range Mean
(mg/m?) (mg/m?) (mg/m?) (mg/m?)
7 December 2021 0.96-1.65 1.18 0.17-1.88 1.15
2 June 2022 0.88-2.76 1.55 0.17-3.22 1.11
2 March 2023 0.54-1.74 0.83 0.33-1.56 0.91
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Figure 2. Annual mean Chl a for the period 1998-2022.

Kim et al,, 2009).

In the north, the higher annual mean Chl a concen-
trations are observed near the Shatt al-Arab river plume
(> 2.0 mg/m?3). Here, the Euphrates, Tigris, and Karun
rivers discharge nutrient-rich waters and promote phyto-
plankton growth. The Iranian Bay also exhibits high Chl a
concentration, reflecting favorable conditions for phyto-
plankton. Notable Chl a concentrations are found in Kuwait
Bay, of the order of 2.0 mg/m? (Devlin et al., 2019; Heil et
al,, 2001). The Shatt Al-Arab estuarine waters in the north
are characterized by high biomass and nutrient-rich con-
ditions, leading to higher productivity but lower species
diversity compared to adjacent areas, while Kuwaiti waters
demonstrate higher species diversity but lower biomass
and production than the Shatt Al-Arab region (Rao and Al-
Yamani, 1998). Recent studies have attributed changes in
the Gulf’s phytoplankton community to nutrient increases
(Devlin et al.,, 2015) and salinity-related fluctuations, par-
ticularly in the Northern Gulf region (Al-Said et al., 2017),
playing a crucial role in driving the elevated Chl a levels

and primary productivity observed in the northern Gulf.

The Gulf of Salwa, which shares its coast with Qatar,
Bahrain, and Saudi Arabia highlights a remarkable Chl a
concentration of around 2.0 mg/m3. The east coast of
Qatar exhibits moderate Chl a concentrations, in the range
of 1.0-1.5 mg/m?3 and higher, which is consistent with the
earlier studies (Al-Naimi et al., 2017; Al-Thani et al.,, 2023;
Rajendran et al., 2022). Along the Iranian coast, the Chl a is
relatively higher in the southern part, adjacent to the Strait
of Hormuz. A decrement in Chl a patterns is also visible
from the Strait of Hormuz towards the central Gulf. This is
aligned with the pattern of the nutrient-rich water inflow
from the Arabian Sea (Mussa et al., 2024; Ismail and Al
Shehhi, 2022). The deeper regions of the Gulf with limited
nutrient supply to the euphotic zone exhibit significantly
lower Chl a concentration, emphasizing the importance
of coastal processes in supporting higher productivity in
the nearshore waters. However, certain regions along the
coast, especially where the discharge of brine is promi-
nent (for instance, the Jubail coast of Saudi Arabia), exhibit
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lower Chl a concentration compared to the adjacent re-
gions. This variability is crucial when shaping the spatial
distribution of marine ecosystems since they are subject
to anthropogenic stress and resilience.

4.3 Seasonal and monthly mean Chl a features

The Gulf exhibits distinct seasonal variations in Chl a, de-
monstrating diverse ecological dynamics influenced by re-
gional climatic conditions and water exchange with the
Arabian Sea. The seasons are considered winter (Decem-
ber to March), spring (April to May), summer (June to
September), and autumn (October to November). The sea-
sonal variations in Chl a concentrations are not uniform
across the basin (Figure 3). Winter exhibits higher Chl a
concentrations in the eastern Gulf, adjacent to the Strait of
Hormuz and along the Iranian coast, while a major part of
the UAE coast experiences lower Chl a concentrations (Fig-
ure 3a). Relatively lower Chl a is observed in the offshore
waters of the northern Gulf, also. The nutrients advected
through the Strait of Hormuz are the primary cause for the
observed higher Chl a in the eastern Gulf, especially along
the coastal and offshore waters of central and southern
Iran (Moradi and Kabiri, 2015; Nezlin et al., 2010). This ex-
tension of nutrient-rich surface waters from the northern
Arabian Sea and the Sea of Oman results in notable east-
west Chl a differences within the Gulf. A similar extension
was observed in SST, indicating a relatively warm water
inflow to the Gulf during winter (Bordbar et al., 2024). The
building up of Chl a in the eastern Gulf is also supported
by shamal winds, which oppose and limit the northward
extension of the ICC (Figure 4a). Therefore, the nutrients
get consolidated within the eastern Gulf. The northern
head of the Gulf also exhibits higher Chl a due to the river
discharge from the Shatt-al-Arab River.

As spring sets in, there is a considerable overall de-
cline in Chl a across the Gulf, with most of the regions
experiencing values below 1 mg/m3. This period gener-
ally marks low values in most of the offshore regions, the
Iranian coast, and the UAE coast (Figure 3b). The inflow of
Indian Ocean Surface Water (I0SW) is increased compared
to winter (Figure 4b). However, the surface layer of the Sea
of Oman is in a nutrient-depleted condition during spring
(Ershadifar et al., 2023), which results in the significant re-
duction of Chl a within the Gulf. Therefore, the reduction of
Chl a in the Gulf is primarily attributed to the low nutrient
concentrations in the inflow waters. Spring is also charac-
terized by the beginning of stratification in the Gulf, thus
the nutrient mixing from the deep layer gets diminished
(Alosairi et al.,, 2011; Reynolds, 1993). However, the north-
ern head of the Gulf and Kuwait Bay have relatively higher
concentrations (1-2 mg/m?3) compared to other regions.
This is mainly attributed to the nutrient supply from the
Shatt-Al-Arab River (Moradi, 2020; Pous et al., 2015). The
ACC is stronger during spring (Figure 4b), which enhances
the flow of the river-discharged waters along the Arabian
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coast. The influence of the Shatt-Al-Arab river water in
the Gulf is limited to the northwestern Gulf (Al-Mudaffar
Fawzi and Mahdi, 2014). Therefore, relatively higher Chl a
has been observed along the Saudi Arabian coast during
this season compared to winter.

The summer and autumn mark the highest mean Chl a
concentrations (1-2 mg/m3) along the coast of Kuwait,
Saudi Arabia, Bahrain, Qatar, and the UAE (Figure 3c and
d). Compared to spring, the offshore waters in the north-
ern and central Gulf also exhibit higher Chl a concentra-
tions as the flow of nutrient-rich waters from the Sea of
Oman gets intensified. Along the Qatar coast, the highest
Chl a is observed during summer. This is consistent with
earlier studies (Aboobacker et al., 2024b; Elobaid et al,,
2022; Rakib et al.,, 2021). On the other hand, the Chl a
along the Iranian coast is relatively low during summer
and autumn compared to winter. The well-defined eddies
present during summer (Figure 4c) enable a southward
transport of nutrient-rich waters from the Iranian coast,
while the relatively low wind speeds in the later summer
and early autumn (Aboobacker et al., 2021a) cause their
settling in the southern Gulf. Within the circumference of
eddies, well-marked lower concentrations are evident dur-
ing summer. The improved mixing conditions and a decline
in SST facilitate nutrient resuspension in the offshore re-
gions of the Gulf during autumn, as exhibited by a relatively
higher Chl a compared to the summer.

Distinct spatial variability has been observed in the
monthly mean Chl a concentrations (Figure 5). The Strait
of Hormuz and the southern Iranian coast experience high
Chl a during January and February, while the lowest is in
June-August. This depicts the variations in the richness of
nutrients in the inflow waters from the Sea of Oman and
the role of shamal winds in controlling the circulations
in the Gulf (Mussa et al., 2024). The observed seasonal-
ity along the Iranian coast, especially the region under
the influence of IOSW (Nezlin et al., 2010), is similar to
the typical tropical /subtropical ocean pattern, while the
remaining Gulf coast has no such resemblances. Most of
the Gulf basin experiences the lowest Chl a (< 1 mg/m3)
during April and May as the nutrient supply is very lim-
ited. The percentages of areas with concentration less
than 1 mg/m3 are 77% (April), 72% (May), 71% (June),
68% (March), 61% (July), and 56% (August). On the other
hand, the southern and western shelves of the Gulf have
the highest Chl a during August-October. These months
mark the lowest mean wind speeds in the Gulf (Aboobacker
et al., 2021a), while the inflow of IOSW, the eddies, and
the ACC are stronger (Mussa et al., 2024). This helps to
maintain a nutrient-rich surface layer along these shelves.
A widespread Chl a distribution is notable during Novem-
ber, with the concentration exceeding 1 mg/m3 accounting
for 75% of the Gulf. Circulations in the Gulf are generally
weaker during this month (Mussa et al,, 2024). Whereas
the hydrographic conditions and nutrient availability are
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Figure 3. Mean Chl a during a) winter, b) spring, ¢) summer, and d) autumn for the period 1998-2022. Seasons are
considered as DJFM, AM, JJAS, and ON, respectively.
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Figure 4. Surface mean current vectors and magnitudes during winter, spring, summer, and autumn for the period
1998-2022.
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Latitude (°N)
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Figure 5. Monthly mean Chl a for the period 1998-2022.

in favor of this increased spatial distribution.

The monthly variability of Chl a concentrations at P1
to P5 is shown in Figure 6. At P1, the monthly mean Chl a
is between 1.26 and 1.59 mg/m3, where the seasonal vari-
ations are minimal. This suggests that the north station is
aregion of high primary productivity, due to consistent nu-
trient availability and favorable environmental conditions.
This is because the river discharge is the main contribu-
tor of nutrients to this region, and the limited seasonal
variability can be attributed to the difference in the river
discharge. Moreover, the impact of overall Gulf circulation
is weaker in this region. Being situated along the southern
shelf of the Gulf basin, the monthly mean Chl a concen-
trations at P2 and P3 follow similar patterns, while the
highest concentration occurs at P2. The range of mean
concentrations at P2 and P3 is 0.98-2.14 and 0.63-1.82
mg/m?3, respectively. There exists strong seasonal variabil-
ity in Chl'a concentrations at these locations. The peak
Chl a at P2 and P3 occurred during August and September,
respectively. The lag of one month on the peak concentra-
tion is induced by the dynamics of the Gulf that alter the
magnitudes of the flow. Mussa et al. (2024) identified a rel-
atively higher mean current speed on the northern coast
of Qatar during August compared to September, while the
opposite is true along the southeastern coast of Qatar. The
lowest Chl a at P2 and P3 occurred during February. This
coincides with the highest shamal wind occurrence in the
Gulf (Aboobacker et al., 2021a,b). The well mixing induced
by shamal winds weakens the surface dominance of Chl a
as the nutrients are re-distributed to the entire water col-
umn.

The mean Chl a at P4 and P5 are nearly the same ex-
cept during December and January. Both locations are
situated along the Iranian coast, where the influence of

ICC is higher compared to the other areas of the Gulf. The
ranges of mean concentrations at P4 and P5 are 0.75-1.74
and 0.77-1.94 mg/m3, respectively. Seasonal variability is
evident with lower concentrations during May and June,
and higher concentrations during February and January,
respectively at P4 and P5. This is directly linked to the sea-
sonal variability of winds (Aboobacker et al., 2021a) and
the circulation features (Mussa et al., 2024). An interesting
feature observed between the southern shelves (P2 and
P3) and the Iranian coast (P4 and P5) is the prevalence
of Chl a concentration, which is inversely related, as illus-
trated in the monthly patterns. This pattern occurred due
to the difference in the available Chl a in the Iranian coast
by the action of winter shamal winds and to the southern
shelves by the action of eddies and the prevalence of ACC.
Overall, the Gulf’s Chl a dynamics underscore a complex
response to seasonal climatic patterns, water mixing char-
acteristics, and nutrient dynamics.

4.4 Long-term linear trends in Chl a

It is evident from the previous analyses that the Gulf ex-
hibits a complex and dynamic pattern of Chl a, with distinct
regional variations and responses to external forcing fac-
tors. To assess the long-term temporal variability in Chl g,
we further performed a linear trend analysis. Despite the
lack of statistical significance, a positive trend is observed
in the spatially averaged annual mean Chl a across the Gulf
(Figure 7a). Nezlin et al. (2010) have shown that open wa-
ters in the Gulf were characterized by an overall positive
trend, with short-term negative (1997-1999) and positive
(2000-2002 and 2007-2008) anomalies. However, our
results show that this increase is not uniform throughout
the Gulf but has distinct regional variations influencing the
overall picture. This is evident when analyzing the linear
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Figure 6. Monthly variability of Chl a at five select coastal stations.

annual mean Chl a at P1 to P5 (Figure 7b=f). The

Chl a concentrations at P1, P2, and P3 show an increasing

trend during 1998-2022 with estimated rates of 0.0305,
0.0172, and 0.0242 mg/m3 /y, respectively. In contrast, the
Chl a at P5 shows a weak decreasing trend, while that at

P4 has no clear trends.

The observed increasing trend in Chl a concentrations

across the Gulf, especially the northern (P1) and southern
shelves (P2 and P3), is fascinating as far as the primary
productivity is concerned. This highlights the complex
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Figure 7. Interannual variability of mean Chl a at select stations.
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Table 3. Results of multiple linear regression analysis. The stars represent the levels of significance for 3 of the most
used levels. The correlation coefficient (r) with p-value < 0.001 is flagged with ***; with p-value < 0.01 is flagged with **;
with p-value < 0.05 is flagged with *. Non-significant r values are not presented.

Model P1 P2 P3 P4 P5

R? r R? r R? r R? r R? r
Chla ~ SST 0.00 - 069 083 060 077 016 04" 017 041
Chla ~ WS 003 016" 042  0.65" 037  0.61"* 002 015" 002 015"
Chla ~ SLA 0.01 - 0.22 0.47*** 0.20 0.45™* 0.02 0.14* 0.00 -
Chla ~ SST + SLA 0.01 - 0.75 0.86™* 0.66 0.81*** 0.16 0.40™* 0.17 041"
Chla ~ SST + WS 0.03 0.16* 0.71 0.84*** 0.61 0.78™** 0.19 0.44™** 0.19 0.44***
Chla ~ WS + SLA 0.03 0.16* 0.51 0.71%* 0.47 0.68*** 0.03 0.17* 0.03 0.16*
Chl a ~ SST+ SLA + WS 0.03 0.18" 0.76 0.87*** 0.67 0.82*** 0.19 0.44™* 0.19 0.44**

interplay of regional factors and leads to potential impli-
cations for the ecosystem. The trend observed in the Gulf
mirrors broader regional trends documented for the Sea of
Oman and the Arabian Sea. Chinta et al. (2024) reported
a decline in Chl a in the Sea of Oman at a rate of —0.088
mg/m?3 /y, suggesting a broader regional shift in primary
productivity. Roxy et al. (2016) further underscored this
trend, predicting a potential decline in primary production
for the Arabian Sea in the future. The observed consis-
tent decline, particularly evident along the eastern coast
of the Gulf bordered by Iran, suggests a shared influence
from the Arabian Sea and the Sea of Oman. This could be
due to a combination of factors such as climate change,
altered upwelling patterns, or nutrient depletion within
the Arabian Sea. The contrasting Chl a trends observed be-
tween the Iranian and Arabian coasts are likely driven by
differences in nutrient availability. While the Iranian coast
benefits from the nutrient influx from the Sea of Oman,
the Arabian coast appears to rely more heavily on other
nutrient sources. Al-Thani et al. (2023) reported the pos-
sibility of localized frontal upwelling based on their field
measurements in the Qatar waters, which could contribute
to nutrient enrichment in the southern Gulf. This suggests
that factors such as riverine inputs (Moradi, 2020), atmo-
spheric deposition (Asgari and Soleimany, 2023), localized
upwelling (Al-Thani et al., 2023), and even precipitation
(Nezlin et al., 2010) may play a more dominant role in
sustaining primary productivity along the Arabian coast.
The increasing Chl a in the northern and southern
Gulf could contribute to an increased risk of harmful algal
blooms (HABs). The Gulf has experienced an increasing
frequency and severity of HABs in recent decades (Al She-
hhietal, 2014; Al-Yamani et al,, 2020). One such event was
recorded in 2008-2009. These blooms can have detrimen-
tal effects, including marine life mortalities, as observed
in Kuwait Bay (Al-Yamani et al., 2020), and impacts on hu-
man health through respiratory irritation (Al Shehhi et
al,, 2014; Tomlinson et al., 2009). The increased nutrient
availability driving the Chl a increase may also exacerbate
eutrophication, leading to oxygen depletion and further
stress on marine organisms. The declining Chl a trend

along the Iranian coast (P5) may indicate a reduction in
primary productivity, potentially leading to food web shifts.
A decrease in phytoplankton biomass could impact higher
trophic levels, affecting fish populations and other marine
organisms that rely on phytoplankton as a food source.
This trend, coupled with the broader regional decline in
Chl a observed in the Sea of Oman (Chinta et al., 2024) and
the predicted decline in primary production for the Ara-
bian Sea (Roxy et al.,, 2016), suggests a complex interplay of
regional and local factors influencing primary productivity
in the Gulf.

4.5 Relationship between Chl a and environmental
factors

A multiple linear regression model has been applied to
investigate the relationship between Chl a and possible en-
vironmental forcing factors such as SST, wind speed (WS),
and sea level anomaly (SLA). Results show that the role
of forcing factors has significant differences with different
model combinations. The values of the coefficient of deter-
mination (R?) and correlation coefficient (r) are given in
Table 3. The individual correlation of SST and wind speed
with Chl a is higher than that of SLA for all the selected sta-
tions. When the correlations with each of the independent
variables are considered separately, the highest value was
found for SST (R? = 0.69), followed by wind speed and SLA
(R? = 0.42 and 0.22, respectively) at P2.

The data at P2 and P3 show significant correlation with
higher values of r for all the combinations in the model;
whereas the data at P1, P4, and P5 show relatively lower
r values in most of the combinations of variables in the
model, and they are not significant. The pairwise regres-
sion analysis indicates that the addition of SLA as an inde-
pendent variable with SST increases the R? value by a mod-
est 0.06 at both P2 and P3. That is, when SLA was added
to the model along with SST, the increase in R? associated
with the Chl a was only about 6%. Moreover, the addition
of wind speed with SST in the model shows a similar cor-
relation with Chl a concentration, without considerable
changes in RZ values. Unlike SST, SLA had a better associa-
tion with wind speed in the pairwise regression, increasing
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R? from 0.22 to 0.51, at location P2. Hence, wind speed con-
tributed to a 29% variance in R> when combined with SLA
in the model. Finally, with all variables taken together as
independent variables, the explained variance (R?) is 0.76
for all data, which is close to the result of the previous pair-
wise model with SST and SLA (R? = 0.75). Overall, the data
show that SST has a stronger correlation with Chl a than
wind speed and SLA, respectively. The stronger correlation
we observed between SST and Chl a likely reflects the fun-
damental role of temperature in regulating phytoplankton
growth and ecosystem dynamics. Temperature directly
influences phytoplankton metabolic rates, water column
stratification, nutrient availability, and species composi-
tion, all of which can impact Chl a concentrations (Doney
etal.,, 2012).

4.6 Interannual variations and the influence of global
climate oscillations

The interannual variations in basin-averaged annual mean
Chl a reveal a clear pattern of peaks and troughs during
the study period (Figure 7a). The years 2000, 2008, and
2017 are characterized by high Chl a levels, while a period
of significantly low Chl a is observed from 2010 to 2014.
This period of low Chl a is particularly pronounced at P1,
P2, and P3 (Figure 7b,c,d). Post-2015, an increasing trend
in annual mean Chl a is observed across most regions, in-
dicating a rebound from the previous low period. This
does not follow at P4 and P5. This regional anomaly could
be attributed to various factors that need further investi-
gation. The high Chl a observed in 2008 is most promi-
nent at P5, indicating a localized influence on the regional
distribution of Chl a. Conversely, the period of low Chl a
from 2010 to 2014 is more intense at P1 and P2 compared
to P3.

Studies have demonstrated that global climatic oscil-
lations can significantly influence biological productivity
in various oceanic regions (Barimalala et al., 2013; Cianca
etal, 2012; Racault et al., 2017; Wiggert et al;, 2009). The
impact of these oscillations on Chl g, a key indicator of phy-
toplankton biomass and primary productivity, has been
observed in different parts of the world’s oceans. In the
tropical Indian Ocean, Wiggert et al. (2009) showed that
Chl a concentrations are impacted by Indian Ocean Dipole
(IOD) events, highlighting the connection between large-
scale climate patterns and regional biological productivity.
Furthermore, Barimalala et al. (2013) found a notable im-
pact of El Nifio events on the Arabian Sea, reporting a 24%
decrease in Chl a concentrations during winter. These
findings highlight the importance of considering climate
oscillations when studying the Chl a variations, especially
at interannual time scales.

The basin-averaged annual mean Chl a overlaid with
Oceanic Nifio Index (ONI), Dipole Mode Index (DMI), and
North Atlantic Oscillation (NAO) index is shown in Figure 8.
The relationship between annual mean Chl a variability
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and climate indices is not linear. This is likely due to the
co-existence of multiple climate phenomena and regional
factors. ENSO, 10D, and NAO can exert a broad influence on
global atmospheric circulation patterns, which in turn im-
pact a variety of oceanographic processes, including wind
patterns, SST, upwelling, and nutrient transport (Abish et
al,, 2018; Grunseich et al,, 2011; Seelanki et al., 2022). To
further investigate these associations in the Gulf, we per-
formed a composite analysis of annual mean Chl a with
respect to each climate index (Table 4). Composite analy-
sis helps to isolate the signal of a specific climate event or
phenomenon from the inherent variability of the climate
system. By averaging data across multiple occurrences of
the event, the signal is amplified while the random noise
is suppressed. The years selected for the composite are
(1) El Nifio: 1998, 2003, 2007, 2010, and 2016; (2) La
Nifia: 1999, 2000, 2008, 2011, 2012, 2021, and 2022;
(3) Positive 10D: 2006, 2012, 2015, and 2019; (4) Neg-
ative I0D: 1998, 2010, 2014, 2016, and 2021; (5) positive
NAO: 2007, 2015, and 2020; and (6) negative NAO: 2010,
and 2021.

The composite analysis of Chl a, wind speed, SST, and
sea level anomaly (SLA) reveals the role of physical mech-
anisms that underpin the observed variability in Chl a con-
centrations during different phases of ENSO, 10D, and NAO
(Table 4). During La Nifa events, elevated Chl a levels
across most stations (except P1) coincide with increased
wind speed and SLA, while they are aligned with the cooler
SST along the Iranian coast. La Nifia reduces the inflow
from the Arabian Sea to the Gulf, as large-scale circulations
weaken (Jensen, 2007). The relatively warm water inflow
from the Arabian Sea to the Gulf during winter is more
prominent along the Iranian coast, while its reduction en-
hances the sea surface cooling by the effect of strong winter
shamal winds. On the other hand, higher wind speeds and
increased SLA enhance upwelling and vertical mixing in
the Gulf, which increases the nutrient availability in the sur-
face layer that is conducive to phytoplankton growth. This
is consistent with the broader observations in the Indian
Ocean that the interplay between cooler SSTs and stronger
winds during La Nifia years promotes favorable conditions
for Chl a enhancement (Barimalala et al., 2013). This is
also aligned closely with the results obtained in the Red
Sea (Raitsos et al,, 2015). Although the northern head of
the Gulf (P1) responds quite differently, the basin-averaged
values support the above observations. In general, ENSO
can influence winter convective mixing and mixed-layer
depth, thereby influencing the biological response of the
Gulf significantly.

The composite analysis with I0D events reveals that the
positive phases are aligned with an increase in Chl a and
wind speed and with a decrease in SST and SLA (Table 4).
The effect of IOD is quite complex in the Arabian Sea and
adjacent areas, especially when they co-occur with ENSO.
For instance, the co-occurrence of positive IOD and El Nifio
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Figure 8. Climate indices of ENSO, IOD, and NAO overlaid with basin-averaged annual mean Chl a.

in the northern Arabian Sea reduces the Chl a, while an
independent positive IOD increases the Chl a (Seelanki et
al,, 2022). However, irrespective of their co-occurrence,
the results highlight an increase in Chl a (except at P1)
during positive [0Ds, suggesting that positive I0D can favor
increased primary production in the Gulf. At P1, higher
Chl a occurred during negative 10D, which is supported
by a lower SLA. This indicates that localised factors are
more prevalent in the northern Gulf in determining the
dominance of Chl a distribution than the direct impact of
climatic oscillations such as 10D and ENSO.

The composite analysis of Chl a with NAO responds
quite differently compared to that with ENSO and 10D
(Table 4). Higher Chl a along the Arabian coast is observed
during negative NAO, while that along the Iranian coast and
most parts of the Gulf (basin-averaged) is observed during
positive NAO. Whereas higher wind speeds have occurred
during positive NAO, and lower SST and SLA have occurred
during negative NAO, irrespective of the spatial distinction
identified for the Chl a in the Gulf. Positive NAO enhances
shamal winds that lead to relatively cooler SSTs in the Gulf
during summer (Dasari et al., 2022; Lachkar et al., 2025).
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Table 4. Composite of annual means of Chl a, SST, wind speed, and SLA during ENSO, I0D, and NAO events. Bold numbers

indicate a higher value compared to their opposite phase.

Station El Nifio La Nifia plOD nlOD pNAO 7nNAO
e P1 1.43 1.37 1.44 1.48 1.55 1.64
E P2 1.46 1.47 1.54 1.50 1.61 1.62
g P3 1.11 1.13 1.22 1.20 1.29 1.38
S P4 1.06 1.08 1.08 0.99 1.11 1.06
S P5 1.09 1.12 1.11 0.96 1.04 0.98
Gulf-average 1.07 1.08 1.09 1.04 1.14 1.12
P1 492 5.05 5.02 4.89 4.98 490
'93 - P2 4.74 4.93 4.79 4.69 4.82 4.62
§ é P3 4.33 4.46 4.41 4.25 4.44 4.16
£ P4 3.94 4.08 3.98 3.88 3.98 3.73
= P5 3.18 3.22 3.21 3.14 3.18 3.10
Gulf- average 3.67 3.75 3.73 3.63 3.74 3.60
P1 24.97 24.64 24.89 25.14 24.96 25.39
o P2 26.68 26.54 26.67 26.92 26.62 27.19
E; P3 27.87 27.79 27.72 28.07 27.71 28.39
A P4 27.44 27.47 27.38 27.67 27.40 28.08
P5 28.03 28.10 2791 28.20 27.96 28.54
Gulf- average 26.99 26.90 2691 27.19 26.94 27.50
P1 0.040 0.047 0.063 0.062 0.086 0.099
6 P2 0.047 0.056 0.069 0.080 0.090 0.107
::‘ P3 0.045 0.064 0.067 0.073 0.088 0.102
& P4 0.042 0.054 0.063 0.065 0.084 0.097
P5 0.048 0.060 0.073 0.074 0.095 0.103
Gulf- average 0.044 0.056 0.066 0.069 0.089 0.101

The winter shamal also shows a significant enhancement
in the Gulf during positive NAO (Nelli et al., 2022). Amid
increased wind speeds, cooler SST, and lower SLA, the re-
duction in Chl a during the positive NAO is a unique feature
along the Iranian coast. This is primarily because of the
changes in the circulation of the Arabian Sea and the Gulf.
Strong winter shamal winds causes reduction in the inflow
from the Arabian Sea and the general circulation in the
Gulf (Asharaf et al., 2025; Mussa et al., 2023; Rafati and
Rezazadeh, 2020). Such changes can directly impact the
surface waters on the Iranian coast.

In general, climate oscillations can cause significant
changes in physical-biological processes that arise from
the changes in wind patterns, mixing, nutrient availabil-
ity, and phytoplankton community composition. Given
the intricate interplay between SST, wind speed, SLA, and
biological productivity, and the spatial heterogeneity ob-
served across the Gulf, further studies are essential to
unravel the underlying mechanisms and improve predic-
tive understanding of climate-driven marine ecosystem
responses.

5. Conclusions

This study demonstrates the intricate relationship between
climatic conditions, nutrient dynamics, and marine produc-
tivity in the Gulf based on merged satellite data obtained
from CMEMS during 1998-2022. Results show that the
northern head of the Gulf experiences a higher concentra-
tion of Chl a throughout the year due to the influence of the
river Shatt-Al-Arab. Seasonal variations further illustrate
the Gulf’s dynamic ecosystem, with the winter showing en-
hanced Chl g, particularly along the Iranian coastal waters
of the central and eastern Gulf, facilitated by nutrient-rich
inflow from the Sea of Oman. On the other hand, the spring
and summer are characterized by enhanced Chl a along
the coasts of Kuwait, Saudi Arabia, Bahrain, Qatar, and the
UAE, while a severe decline is identified along the Iranian
coast. This is mainly due to the increased stratification,
which inhibits nutrient mixing. Further, the less-nutrient
inflow from the Sea of Oman during spring causes a deple-
tion in the nutrient availability of the Gulf, which results
in a lower Chl a concentration.

The trends in Chl a concentrations across the Gulf high-
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light the complex interplay of regional factors affecting
primary productivity. A significant increasing trend is ob-
served along the northern and southern shelves, while
a notable decline is experienced along the Iranian coast,
suggesting a shared influence from the adjacent Sea of
Oman and the northern Arabian Sea, possibly due to al-
tered upwelling or nutrient depletion. The observed con-
trasting trends along the Iranian coast likely result from
differing nutrient sources. Multiple linear regression anal-
ysis shows the strongest correlation for SST than wind
speed and SLA, highlighting its role in regulating phyto-
plankton growth. Composite analyses reveal that La Nifia
and positive 10D phases generally enhance Chl a across
most of the Gulf, with a corresponding increase in wind
speed and decrease in SST. Interestingly, the northern head
of the Gulf exhibits a unique response; the Chl a levels in-
crease during El Nifio and negative 10D phases. Positive
NAO enhances the Chl a in most parts of the Gulf, including
the Iranian coast, while negative NAO enhances the Chl a
along the Arabian coast, irrespective of the basin-scale
consistency of wind speed, SST, and SLA with NAO. These
provide a clear distinction between the two regions in the
Gulf, supporting the role of localised effects on the Chl a dis-
tribution. Given the intricate interplay between SST, wind
speed, SLA, and biological productivity, and the spatial het-
erogeneity observed across the Gulf, further studies are
essential to unravel the underlying mechanisms and im-
prove predictive understanding of climate-driven marine
ecosystem responses.
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