

Trapped Contaminants in the Coastal Waters of the Southern Caspian Sea: off the Sefidrud River

Jafar Azizpour*, Reza Rahnama, Ali Hamzepoor, Seyed Masoud Mahmoudof

Abstract

Identifying and collecting accumulated contaminants is crucial for environmental protection in enclosed bodies of water, such as the Caspian Sea. As the world's largest landlocked water body, its limited exchange with open seas and oceans hinders self-purification. This research maps contaminant accumulation at the mouth of the Sefidrud River on the southern coast of the Caspian Sea using vessel-mounted ADCP, CTD, and water sampling data. Field measurements were conducted in two distinct seasons at different stations and transects ranging from 2–15 m in depth. The results show that the contaminants accumulated in the core of sub-mesoscale eddies. These surface sub-mesoscale eddies trap nutrient-rich freshwater discharging from the river, creating distinct hydrographic cores with significantly elevated nutrient levels, as well as different temperature and salinity compared to the surrounding waters.

Keywords

Caspian Sea; Sub-mesoscale eddy; Contaminants; Nutrients; Field measurements

¹Iranian National for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran 1411813389, Iran

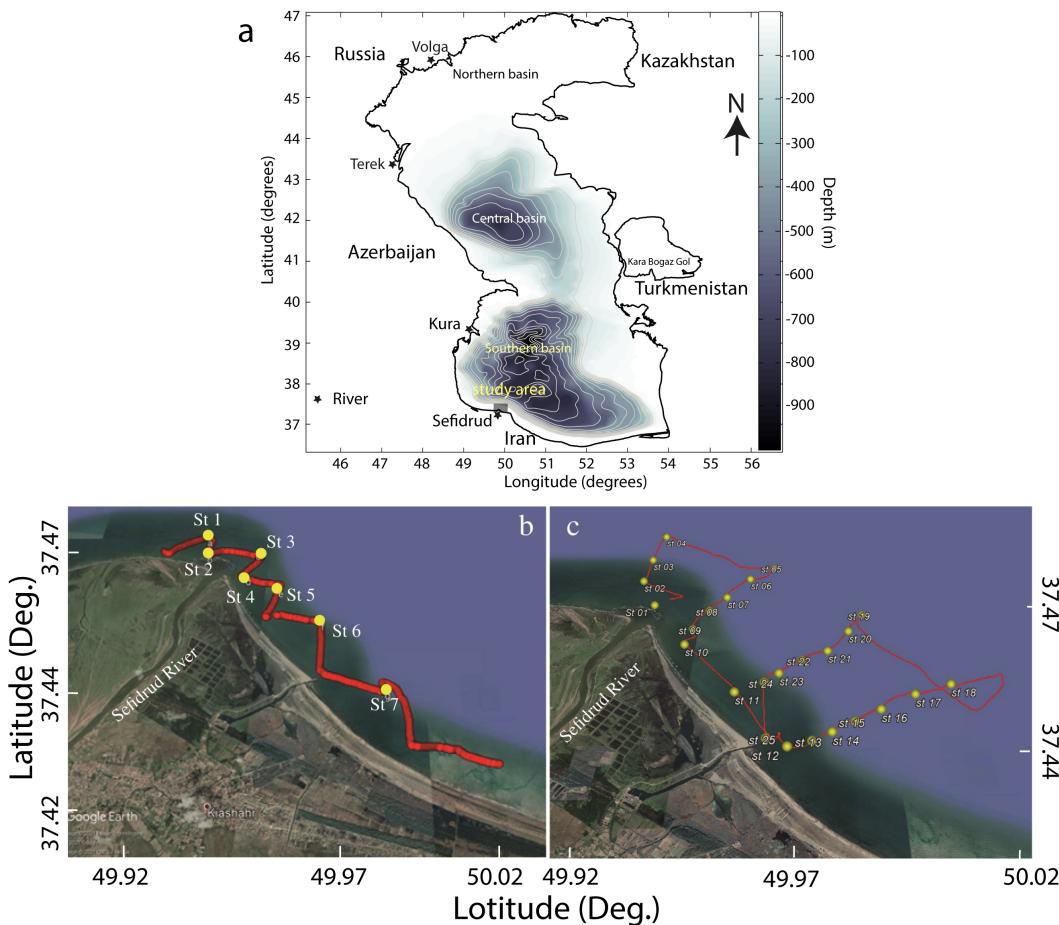
*Correspondence: azizpour@inio.ac.ir (J. Azizpour)

Received: 11 August 2024; revised: 1 December 2025; accepted: 8 December 2025

1. Introduction

The Caspian Sea (CS) is the world's largest landlocked water body, which extends > 1000 km meridionally and contains more than 40% of the inland waters of the world. It is located in a depression separating Europe and Asia between the latitudes of 47°13' and 36°34'N and longitudes of 46°38' and 54°44'E (Azizpour and Ghaffari, 2023; Ehteshami et al., 2017; Safaian et al., 2004; Saleh et al., 2018).

More than 130 rivers flow into the CS, and the total river inflow is estimated to be around 300 km³/yr. The contribution of the northern coast rivers is about 88% of the total river inflow, while the inflow along the western coast rivers accounts for 8% of the total inflow. The remaining inflow occurs along the Iranian coast. There is no permanent river inflow from the eastern coast (Ghaffari et al., 2010; Roshan et al., 2012; UNEP, 2006).

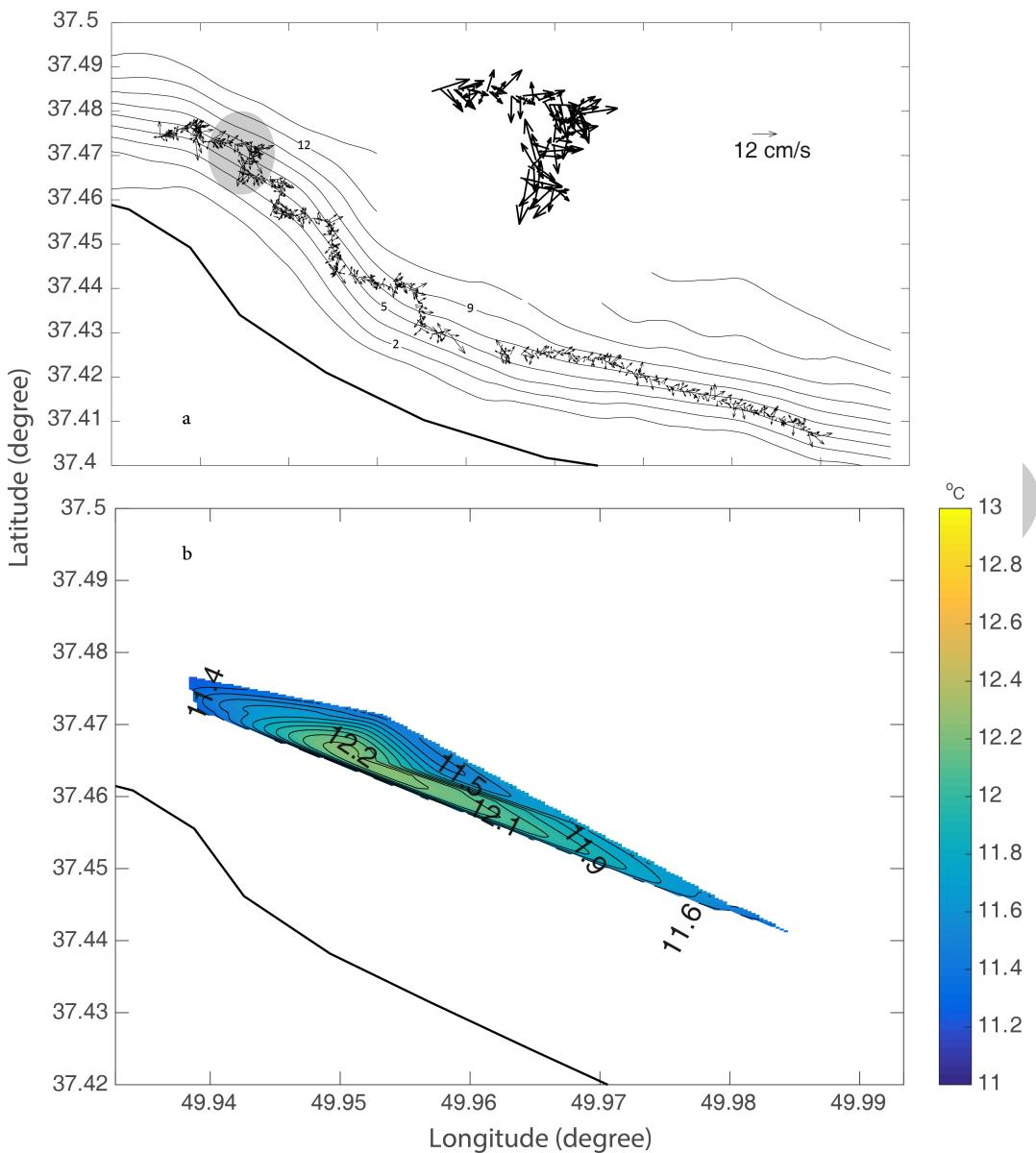

Industrial development and irregularly increasing population in rural and urban areas, followed by expansion of agricultural areas and fertilizer use, as well as excavation and exploitation of oil, have led to high amounts of industrial and homemade wastewater and agricultural runoff into the Caspian ecosystems. The pollution directly de-

clines the Caspian biodiversity (Safaian et al., 2004).

The concentrations of pollutants, such as oil hydrocarbons, phenols, synthetic surfactants, organic matter, and metals, in river mouths frequently exceed maximum allowable concentrations by an order of 10 times or more and remain persistently high throughout the year. These pollutants generally originate from anthropogenic activities such as agriculture, mining, oil refining, industries, energy production, and shipping (CEP, 1998).

As an endorheic basin, the CS faces a fundamental challenge in self-purification owing to its disconnection from the open oceans. This isolation causes pollutants to persist and accumulate within the basin, as there is no outlet for their removal. Therefore, a precise understanding of contaminant inputs is critical for enabling early detection and facilitating effective, cost-efficient mitigation. Riverine discharges represent a major source of these contaminants, with the primary contributions stemming from agricultural, industrial, and urban activities (Aladin and Plotnikov, 2004; CEP, 2011).

Industrial pollution is increasing and exerting greater environmental pressure relative to other pollutant sources (Zaker et al., 2011). This issue is particularly acute along the southern coast, where a growing number of pollutant sources and a paucity of nearshore oceanographic data (Ghaffari and Chegini, 2010) create a critical knowl-


Figure 1. Caspian Sea and study area, a) whole Caspian Basin with main rivers b) first deployment (13 February 2021), and c) second deployment (21 November 2021) paths and stations.

edge gap in local nearshore hydrodynamic processes. It is noteworthy that previous studies have predominantly addressed the general circulation and hydrodynamics of the CS in the offshore and large-scale studies in terms of field measurements and numerical modelling (Azizpour and Ghaffari, 2023; Komijani et al., 2019; Masoud et al., 2019), with only a limited number of studies focused on continental shelf (Ghaffari and Chegini, 2010; Sabet and Barani, 2011). Moreover, some issues in studying the current field effects of contaminants in the southern nearshore areas remain unresolved.

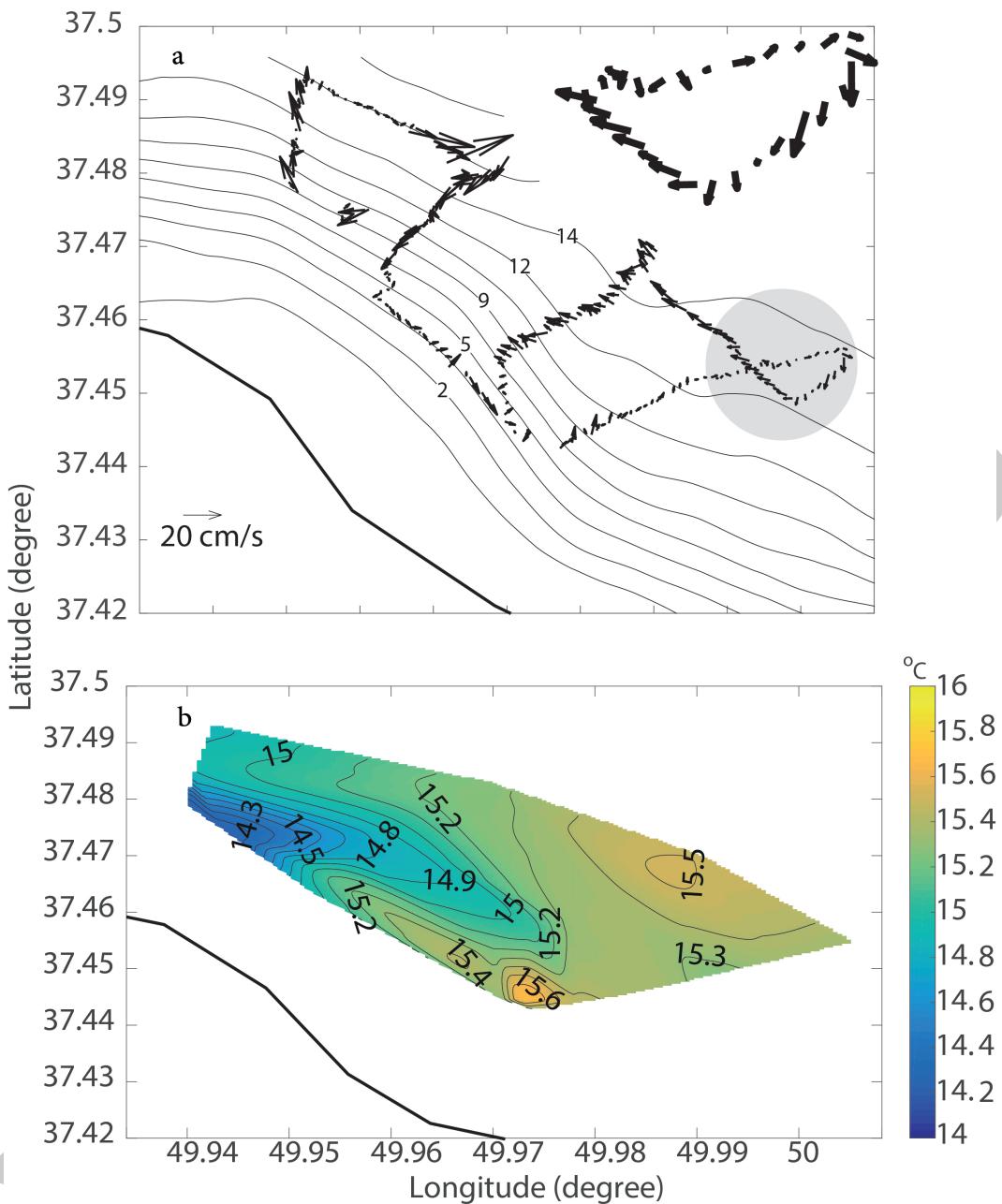
The use of satellite imagery and remote sensing data enables the identification of large and mesoscale features in marine environments, such as surface currents, hydrographic properties, sea level anomalies, and wave dynamics (Andi et al., 2021; Azizpour and Ghaffari, 2023; Kouraev et al., 2011). Remote sensing data have inherent limitations in coastal waters, primarily due to insufficient spatial

resolution for nearshore processes (Teodoro, 2016). Satellite monitoring is further hindered by persistent cloud cover along the Caspian coast, which often obscures the sea surface and prevents reliable observation of nearshore phenomena (Gilmel, 2022). Consequently, direct field measurements are indispensable for obtaining reliable hydrodynamic data in the complex nearshore zone (Azizpour et al., 2016).

River nutrients and other substances are partly trapped in the coastal zone or exchanged with offshore areas through horizontal advection and mixing (Väli et al., 2024). The exchange of these substances and nutrients is facilitated by eddies, river plumes, or wind, and has been reported in several cases, such as in the Baltic Sea (Laanemets et al., 2009; Lass et al., 2010), southwestern European rivers (Romero et al., 2013), and the Gulf of Mexico (Mason et al., 2016). The role of coastal currents and sub-mesoscale eddies in nutrient and pollutant transport and retention has been

Figure 2. Field measurements of the first deployment for a) ADCP current data at surface (red) and near bednear-bed layer (black), and b) CTD (water temperature).

examined in several studies (e.g., Kubryakov et al., 2023). In their study of the Black Sea, the authors used high- and medium-resolution satellite imagery and a NEMO model to reveal that cyclonic eddies are key mechanisms for trapping and transporting coastal waters.


Understanding coastal hydrodynamics is critical for identifying the distribution of pollutants in nearshore areas. This study investigates the impacts of sub-mesoscale eddies on the trapping and dispersal of contaminants, specifically within the coastal region of the Sefidrud River. We assume that the type of eddy present plays a pivotal role in determining whether pollutants disperse or accumulate. The findings of this research will contribute to a better understanding of the factors governing pollutant distri-

bution, ultimately informing management and mitigation strategies to protect marine ecosystems.

2. Material and methods

2.1 Study area

The study area is located on the southern coast of the CS, east part of Bujagh National Park, off the mouth of the Sefidrud River (Figure 1). The Anzali Lagoon is located to the west of the study area. This coastal region, extending to a depth of 15 m, is bounded by longitudes 49.90° to 50.12°E and latitudes 37.39° to 37.53°N. The Sefidrud River, the greatest river on the Iranian coast of the CS with an average discharge of $\sim 50 \text{ m}^3/\text{s}$ (www.glrw.ir/?l=EN), originates

Figure 3. Field measurements of the second deployment for a) ADCP current data at surface (red) and near bed/near-bed layer (black), and b) CTD (water temperature).

112 from the Zagros and Alborz mountain ranges (Beni et al.,
 113 2013). It is a primary conduit for land-based pollutions
 114 into the southern CS (Costantini et al., 2021).

115 **2.2 Field measurements**

116 Field measurements consist of measuring water current
 117 speed and direction using a vessel-mounted ADCP (Workhorse
 118 Sentinel), profiles of physical oceanographic parameters
 119 using CTD, and collecting water samples using Niskin bottle.
 120 For dissolved nutrient analysis, the water samples were
 121 immediately filtered on board through 0.45 μm cellulose

122 acetate syringe filters. The filtrate was collected in high-
 123 density polyethylene bottles and preserved in near freez-
 124 ing temperature until laboratory analysis (Grasshoff et al.,
 125 1999). The time between water sampling and laboratory
 126 analysis was less than 12 hours. Field measurements were
 127 conducted during two seasons, with the first deployment
 128 on 13 February and the second on 21 November 2021. The
 129 surveyed water depth ranged from 2.5 to 15 m. A vessel-
 130 mounted 600 kHz Teledyne RDI Workhorse Broadband
 131 ADCP, interfaced with a Garmin GPSMAP 521s and a lap-
 132 top computer, was used to obtain detailed current profiles.

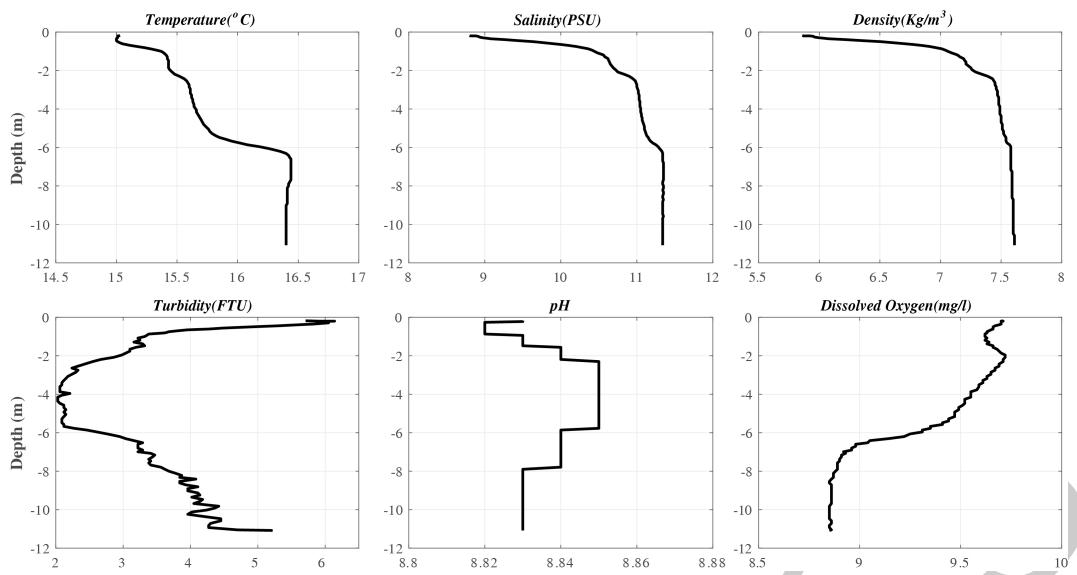
Table 1. Quantity of nutrients in the stations of the first deployment.

No.	Station	Position		PO4(ppb)	NO3 (ppb)
		Longitude (deg.)	Latitude (deg.)		
1	St 01	49.938880	37.471985	9.05	125.63
2	St 02	49.949704	37.466161	11.77	115.63
3	St 03	49.958284	37.463059	9.72	59.38
4	St 04	49.969426	37.455137	6.09	35.00
5	St 05	49.984457	37.440320	5.64	39.38

Table 2. Quantity of nutrient in the stations of second deployment.

No.	Station	Position		PO4(ppb)	NO3 (ppb)
		Longitude (deg.)	Latitude (deg.)		
1	St 01	37.47393	49.94382	7.00	51.88
2	St 05	37.4828	49.96963	8.36	70.00
3	St 07	37.47387	49.96025	14.73	73.75
4	St 09	37.46608	49.95448	15.73	85.63
5	St 11	37.45187	49.96597	10.41	116.25
6	St 12	37.4426	49.97393	15.64	130.63
7	St 15	37.44658	49.9863	9.27	101.88
8	St 18	37.45455	50.00512	24.95	125.63
9	St 19	37.46982	49.99038	16.32	120.63
10	St 21	37.46152	49.98173	11.32	122.50
11	St 23	37.45733	49.97325	12.00	110.63

133 The ADCP was installed in a downward-looking position
 134 on the starboard side of a small boat (~ 4 m length),
 135 with its transducer approximately 80 cm bellow water sur-
 136 face. All instruments were calibrated according to estab-
 137 lished methods prior to the field measurements (Joyce,
 138 1989; Khosravi et al., 2018). The ADCP was equipped with
 139 bottom-track firmware, an internal compass, and tilt sen-
 140 sors. During deployments, the vessel's velocity was up to
 141 2.5 m/s. The vessel-mounted ADCP survey provides a di-
 142 rect and accurate estimate of the water dynamics, both spa-
 143 tially and temporally. Velocity profiles were averaged over
 144 ensembles for 60-second intervals (representing ~ 100 m).
 145 For this study, we used the averaged velocity for the sur-
 146 face and near-bed layers. In shallower areas, surface layer
 147 data were used instead of near-bed data. Temperature and
 148 salinity profiles were measured at several stations using an
 149 Ocean Seven 316 CTD (Figure 1, yellow dots) during both
 150 deployments. Water sampling was conducted at a subset
 151 of these stations (see Tables 1 and 2). To assess phosphates
 152 and nitrate concentrations, subsurface water samples were
 153 collected in triplicate, and the mean value was used in sub-
 154 sequent analysis. The water samples were immediately
 155 filtered on-site through 0.45 µm syringe filters, frozen at
 156 -80°C, and subsequently transferred to the laboratory for
 157 analysis. The field measurement data underwent a two-
 158 stage quality control procedure involving spike removal
 159 via visual inspection and the flagging of outliers exceeding
 160 two standard deviations. Small gaps in the records were


filled using linear interpolation between adjacent values (Azizpour and Ghaffari, 2023; Garcia, 2010).

161
162

2.3 Laboratory procedures

The transferred water samples were treated to determine the concentrations of dissolved inorganic nutrients according to the Grasshoff method (Grasshoff, 1983), using a UV-Vis spectrophotometer (Analytic Jena, Specord 210 model) at the Iranian National Institute for Oceanography and Atmospheric Science laboratory. The Colorimetric method was employed to analyze the nutrients, and light absorbance was measured following the standard procedures outlined in MOOPAM (Environment, 1999; Manbohi and Gholamipour, 2020). Phosphates (PO_4^{3-}) concentrations were measured at a wavelength of 882 nm using the molybdate blue method (Murphy and Riley, 1962). Briefly, ammonium molybdate and antimony potassium tartrate were added to each sample. The resulting complex was reduced to a blue complex by the addition of ascorbic acid, and its absorbance was measured. Nitrate (NO_3^-) concentrations were measured by passing the samples through a copper-coated cadmium reduction column to reduce nitrate to nitrite. The resulting nitrite was determined colorimetrically at 540 nm, based on its reaction with an aromatic amine. The measured absorbance is proportional to the combined concentration of nitrate and nitrite. Finally, nitrate concentration was obtained by subtracting any nitrite values in the sample (Wood et al., 1967).

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Figure 4. Profiles of physicochemical parameters at station 18 are recorded by CTD around the core of sub mesoscale eddy.

Figure 5. A picture of contaminants and foam about a sub-mesoscale eddy that formed around station 18 (see Figure 1c for the position of the station).

3. Results and discussion

3.1 Hydrodynamics results

The results of the ADCP and CTD measurements for both deployments are presented in Figures 2 and 3. Figure 2a shows current velocity at the surface and near-bed lay-

ers for the first deployment, which was conducted along zigzag transects. The maximum speed of the current exceeds 35 cm/s. While the direction of current along the Iranian Coast of the CS is eastward (Zaker et al., 2011), local current direction changes owing to the influence of wind (Ghaffari and Chegini, 2010), and more notably, by

188

193

189

194

190

195

191


196

192

197

193

198

Figure 6. Image of Sentinel 2 mission around study area in the southern Caspian Sea (2021.July, July 04 7:26'). The arrows indicate that eddies form near the shore and originate from the main CS current.

199 the changes of coastal geometry (Beni et al., 2013), suggesting
 200 the presence of water rotation and the formation
 201 of coastal eddies. Observations and field research of local
 202 fishermen partially confirm the claim. Weather conditions
 203 were stable during the field measurements, with
 204 wind speed exceed up to ~ 4 m/s.

205 A warm core sub-mesoscale eddy was identified di-
 206 rectly in front of the Sefidrud River mouth, as evidenced by
 207 the water temperature contours in Figure 2b. The water
 208 temperature contours show an anticyclonic sub-mesoscale
 209 eddy in the area. Anticyclonic warm core eddies (in the
 210 Northern Hemisphere) are characterized by clockwise ro-
 211 tation and an interior downwelling flow, linking conver-
 212 gent surface waters with divergent flows at depth. Accord-
 213 ing to Figure 2b, the temperature difference between the
 214 eddy's core and the surrounding water was about 0.8°C .
 215 Due to the spatial limitations of the current data, the full

216 structure of the sub-mesoscale eddy was not completely
 217 detected; however, its signature was partially detectable.
 218 No significant difference in the current speed and direction
 219 was observed between the surface and near-bed layers, ex-
 220 cept in the immediate vicinity of the sub-mesoscale eddy
 221 (around 37.46°N). The formation of this sub-mesoscale
 222 eddy is likely attributed to the horizontal temperature gra-
 223 dient created by the inflow of the Sefidrud River. Further-
 224 more, the vertical temperature and salinity profiles indi-
 225 cate that the eddy structure extended from the surface to
 226 the bottom.

227 Figure 3 shows current vectors and surface water tem-
 228 perature for the second deployment. With getting distance
 229 from the coast to the deepest stations, the current speed
 230 was increased. An obvious clockwise sub-mesoscale eddy
 231 was identified around station 18 (Figure 3a). This eddy
 232 was extended from the surface to the near-bed, with a sub-

stantial difference in current speed between these two layers. During the second deployment, at least two submesoscale eddies were observed, formed on two sides of the river plume (Figure 3b). A possible explanation for this is that the river plume bifurcates eddies along its sides. This process was observed during a period of exceptional meteorological calm, with a maximum wind speed of ~ 2 m/s. Around the 18th station, the sub-mesoscale eddy is expanded from surface to near bed, with current speeds showing a pronounced vertical gradient, decaying from the surface to the seabed.

High-speed winds cause the eddies to dissipate in the nearshore. Wind-generated currents change current speed and direction at the nearshore (Beni et al., 2013) and consequently change the eddy's structure. As the eddy kinetic energy decreases, the eddy dissipates. In the nearshore region, coastal currents and waves transport contaminants toward the beach. Depth average current speed around sub-mesoscale eddy was about 10 cm/s, where a large amount of contaminants, bubbles, and foam had accumulated (Figure 5). This suggests the eddy created a convergence zone, effectively trapping and concentrating these materials. Station 18 was located near the core of the submesoscale eddy. The sub-surface current speed around this station was about 2–5 cm/s and water hydrodynamics conditions were described as calm. Generally, the current speed was higher during the second deployment, and an increase in river plume influence on coastal alongshore currents in late winter. Figure 4 shows profiles of physicochemical parameters at the 18th station that were recorded by the CTD. Temperature, salinity, and density staircases observed between 2 and 6 m depth were revealed the influence of the eddy on the water column's vertical structure. Minimum and maximum values of turbidity and pH were observed at about 6 m depth, within the lower part of the eddy. This distribution is likely caused by the downwelling effect of an anticyclonic eddy generated in the area, which transports surface water to lower depths. Furthermore, while the maximum dissolved oxygen concentration was observed in the surface layer during the cold season, the subsurface eddy acted to transfer this oxygen-rich water to lower depths. Similar to the first survey, a warm submesoscale core was observed in the area (Figure 3b). The Sefidrud River plume appears to have been responsible for the formation of several eddies. The surface temperature of the river plume was about 13.0°C, contrasting with the surrounding water temperature of about 15.3°C. The temperature of the eddy's core was about 15.3°C. The presence of this warm core is a key indicator of anticyclonic eddies. Warm core eddy causes convergence of nutrients derived from the river plume, as well as marine contaminants, in the core of the eddy (Figure 5). Therefore, higher concentrations of nutrients are expected around the eddy's core.

3.2 Water chemistry results

The nutrient analysis of the water samples (Table 1) reveals that the highest concentrations were observed at the mouth of the Sefidrud River, identifying it as the main nutrient source. From west to east, the quantities of nutrients were decreased, a pattern attributed to a sub-mesoscale anticyclonic eddy. This eddy drives a downwelling process that transports surface nutrients to the lower layer of the water column. The nutrient concentration was remarkable around the eddy's core (station 03).

Table 2 shows the data on phosphate and nitrate in the water samples in some selected stations. Generally, the values increase from west to east of the study area, reflecting the dispersal of the Sefidrud River plume. The lowest values of nutrients were recorded in the westernmost stations, while the maximum amount was recorded around the station 18, which was located near the eddy's core. The results of two surveys show that nearshore sub-mesoscale eddies contribute to the accumulation of contaminants in the region in front of the Sefidrud River. Recently, Manbohi et al. (2021) reported that microplastic pollution levels off the Sefidrud River showed an increasing trend from inshore to offshore, unlike other regions in the South Caspian influenced by river plume. It seems that nearshore sub-mesoscale eddies in this area transport pollution into deeper waters. Consequently, mapping the potential zones for eddy formation would facilitate the targeted collection of accumulated nearshore contaminants. This strategy presents a low-cost opportunity for mitigating damage to the marine environment.

3.3 Eddy generation mechanism

In a rotating fluid, sub-mesoscale eddies can be generated through several mechanisms: (1) the interaction of flows with barriers, such as an offshore main current and geomorphological features like islands or headlands; (2) the convergence of two flows in opposite directions; and (3) barotropic and baroclinic instabilities (Raeisi et al., 2020). A Sentinel-2 satellite image from 4 July 2021, covering the study area, is shown in Figure 6. It seems that the primary reason for sub-mesoscale eddy generation in this area appears to be geomorphological, involving the cape at the Sefidrud River mouth (Figure 6, area 1), as well as the dissipation of kinetic energy (KE) from the main current (bold arrows) as it approaches the coastline (Figure 6, area 2). This latter mechanism points to eddy generation through horizontal shear instability.

When the main currents of the CS approach the nearshore, bed friction disrupts the pressure balance across the current, or jet. This loss of pressure balance triggers a shear instability, which causes the current to meander along the shoreline and generates eddies in the shallower area (Ji et al., 2018). The instability caused by the horizontal velocity shear extracts energy from the mean flow.

340 4. Conclusion

341 Nearshore sub-mesoscale eddies are important phenomena
 342 that play vital role in the transport of heat, nutrients,
 343 and marine pollutions in coastal areas. Due to their limited
 344 spatial and temporal scales, small and meso-scale eddies
 345 are typically undetectable in satellite imagery, making direct
 346 field measurements the most reliable method for their
 347 identification and study in the coastal waters, although
 348 satellite images greatly helps in finding the boundaries of
 349 this phenomenon. On the other hand, identifying areas
 350 where contaminants are likely to accumulate is also valuable
 351 for marine environmental protection. However, field
 352 measurements have inherent limitations. These include
 353 unfavorable weather conditions and the inability to capture
 354 sub-mesoscale eddies with adequate temporal and
 355 spatial resolution.

356 In this paper, we used field measurements data to de-
 357 tect potential formation areas of coastal sub-mesoscale
 358 eddies. Due to geomorphological and geometry features
 359 and shear instability of the horizontal velocity, formation
 360 of sub-mesoscale eddies were possible (Figure 6), even
 361 though they were disappeared during stormy conditions.
 362 Stormy conditions cause to generate high amplitude waves
 363 at near shore of the CS that lead to intense vertical mix-
 364 ing, creating a homogeneous water column from surface
 365 to the bed. On the other hand, sub-mesoscale eddies were
 366 expanded from surface to the bed, consequently, the storm-
 367 induced reduction in kinetic energy caused them to dissipate.
 368

369 Due to the eastward direction of the main current of the
 370 southern CS (Azizpour and Ghaffari, 2023; Dyakonov and
 371 Ibrayev, 2020; Ghaffari and Chegini, 2010), the identified
 372 eddies are predominantly anticyclonic. These types of ed-
 373 dries are convergent, accumulating marine pollutants and
 374 nutrients. The main source of nutrients in the study area is
 375 riverine. When these nutrient-rich waters enter the coastal
 376 zone, they are effectively trapped by sub-mesoscale eddies.
 377 The convergent surface flow that characterizes these ed-
 378 dries accumulates nutrients, and the associated collapse in
 379 the eddy core facilitates their downward transport. This
 380 mechanism effectively redistributes the coastal nutrient
 381 load offshore.

382 Bakhtiari et al. (2024) explored sub-mesoscale eddies
 383 off the Sefidrud River and Rudsar regions using numerical
 384 modeling and MODIS images from 2010 to 2014. Their
 385 results showed distinct turbid current patterns and sub-
 386 mesoscale eddies generated by the Sefidrud River cape
 387 and prevailing winds. The sub-mesoscale eddies were in-
 388 fluenced by the discharge from the Sefidrud River. De-
 389 pending on the current direction, the types of eddies are
 390 predictable; for example, easterly currents generate anticy-
 391 clonic eddies and vice versa. The radius of sub-mesoscale
 392 eddies in the area was less than 20 km, and most of them
 393 were anticyclonic.

394 Generated eddies in the wintertime are obviously due

395 to an increase in current velocity. Sefidrud River cape de-
 396 reflects the current direction, especially when the current
 397 speed increases. Under calm weather conditions, several
 398 sub-mesoscale eddies were generated in the study area.
 399 The core of these eddies exhibited higher temperature and
 400 salinity than the surrounding waters. Warm core eddies
 401 cause downwelling in the ocean, and nutrient-poor waters
 402 as well as low biomasses may converge and be downwelled
 403 (Azizpour et al., 2021; Raeisi et al., 2020). This conver-
 404 gence leads to elevated concentrations of contaminants
 405 and nutrients within the eddy core.

406 A comprehensive assessment of the impact of
 407 sub-mesoscale eddies on coastal pollutant transport re-
 408 quires future studies with expanded spatial coverage and
 409 seasonal resolution.

410 Conflict of interest

411 None declared.

412 References

413 Aladin, N., Plotnikov, I., 2004. *The Caspian Sea. Lake Basin*
 414 Manage. Initiative Thematic Paper.

415 Andi, S., Rashidi Ebrahim Hesari, A., Farjami, H., 2021. *De-*
 416 *tction of internal waves in the Persian Gulf.* Remote
 417 Sens. Lett. 12, 190–198.

418 Azizpour, J., Farjami, H., Ghaffari, P., 2021. *Intrathermocline*
 419 *eddies in the Strait of Hormuz.* Arabian J. Geosci. 14,
 420 2118.

421 Azizpour, J., Ghaffari, P., 2023. *Low-frequency sea level*
 422 *changes in the Caspian Sea: long-term and seasonal*
 423 *trends.* Climate Dynam. 1–11.

424 Azizpour, J., Siadatmousavi, S.M., Chegini, V., 2016. *Mea-*
 425 *surement of tidal and residual currents in the Strait of*
 426 *Hormuz.* Estuar. Coast. Shelf Sci. 178, 101–109.

427 Bakhtiari, A., Shad, E., Siadatmousavi, S.M., 2024. *Exploring*
 428 *submesoscale eddies in the southern Caspian Sea: A fo-*
 429 *cus on rudsar Rudsar and Sefidrud regions.* Deep Sea
 430 Res. Pt. I: Oceanograph.Res. Papers 208, p. 104316.

431 Beni, A.N., Lahijani, H., Harami, R.M., Leroy, S., Shah-Hosseini,
 432 M., Kabiri, K., Tavakoli, V., 2013. *Development of spit-la-*
 433 *goon complexes in response to Little Ice Age rapid sea-*
 434 *level changes in the central Guilan coast, South Caspian*
 435 *Sea, Iran.* Geomorphology 187, 11–26.

436 CEP, 1998. *National Report, Russian Federation.* Caspian
 437 Environment Programme, Baku, Azerbaijan.

438 CEP, 2011. *Caspian Sea State of the Environment*, 102 pp.

439 Costantini, M.L., Agah, H., Fiorentino, F., Irandoost, F., Tru-
 440 jillo, F.J.L., Careddu, G., Calizza, E., Rossi, L., 2021. *Ni-*
 441 *trrogen and metal pollution in the southern Caspian Sea:*
 442 *a multiple approach to bioassessment.* Environ. Sci.
 443 Pollut.Res.28, 9898–9912.

444 Dyakonov, G.S., Ibrayev, R.A., 2020. *High-resolution data*
 445 *on mesoscale dynamics of the Caspian Sea upper layer,*

obtained in a numerical reconstruction. *Data In Brief* 30, 105368.

Ehteshami, M., Dravishi, G., ShirAli, E., 2017. *Caspian Sea, Leading Threats in terms of Pollution and Hydrological Crises*.

Environment, R.O.f.t.P.o.t.M., 1999. *Manual of oceanographic observations and pollutant analyses methods (MOOPAM)*, 3rd edn., Kuwait.

Garcia, D., 2010. *Robust smoothing of gridded data in one and or higher dimensions with missing values*. *Computat. Statistics Data Anal.* 54, 1167–1178.

Ghaffari, P., Chegini, V., 2010. *Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Feridoonkenar Bay, Iran*. *Ocean Sci.* 6, 737–748.

Ghaffari, P., Lahijani, H., Azizpour, J., 2010. *Snapshot observation of the physical structure and stratification in deep-water of the South Caspian Sea (western part)*. *Ocean Sci.* 6, 877–885.

Gilmet, 2022. <https://gilmet.ir/>.

Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. *Methods of seawater analysis, Chapter 10 – Nutrients. Methods of seawater analysis*, 159–228.

Ji, J., Dong, C., Zhang, B., Liu, Y., Zou, B., King, G.P., Xu, G., Chen, D., 2018. *Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region*. *J. Geophys. Res.-Oceans* 123, 8548–8567.

Joyce, T.M., 1989. *On in situ “calibration” of shipboard ADCPs*. *J. Atmos. Oceanic Tech.* 6, 169–172.

Khosravi, M., Siadatmousavi, S.M., Vennell, R., Chegini, V., 2018. *The transverse dynamics of flow in a tidal channel within a greater strait*. *Ocean Dynam.* 68(2), 239–254.

Komijani, F., Chegini, V., Siadatmousavi, S., 2019. *Seasonal variability of circulation and air-sea interaction in the Caspian Sea based on a high resolution circulation model*. *J. Great Lakes Res.* 45, 1113–1129.

Kouraev, A., Crétaux, J.-F., Lebedev, S., Kostianoy, A., Ginzburg, A., Sheremet, N., Mamedov, R., Zakharova, E., Roblou, L., Lyard, F., 2011. *Satellite altimetry applications in the Caspian Sea*, Coastal Altimetry Springer, 331–366.

Kubryakov, A., Aleskerova, A., Plotnikov, E., Mizyuk, A., Medvedeva, A., Stanichny, S., 2023. *Accumulation and cross-shelf transport of coastal waters by submesoscale cyclones in the Black Sea*. *Remote Sens.* 15(18), p. 4386.

Laanemets, J., Zhurbas, V., Elken, J., Vahtera, E., 2009. *Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments*. *Boreal Environ. Res.* 14(1), p. 213.

Lass, H.U., Mohrholz, V., Nausch, G., Siegel, H., 2010. *On phosphate pumping into the surface layer of the eastern Gotland Basin by upwelling*. *J. Marine Syst.* 80(1–2), 71–89.

Manbohi, A. and Gholamipour, S., 2020. *Utilizing chemometrics and geographical information systems to evaluate spatial and temporal variations of coastal water quality*. *Reg. Stud. Marine Sci.* 34, p.101077.

Manbohi, A., Mehdinia, A., Rahnama, R., Dehbandi, R., 2021. *Microplastic pollution in inshore and offshore surface waters of the southern Caspian Sea*. *Chemosphere* 281, 130896.

Mason, O.U., Canter, E.J., Gillies, L.E., Paisie, T.K., Roberts, B.J., 2016. *Mississippi river plume enriches microbial diversity in the northern Gulf of Mexico*. *Frontiers Microbiol.* 7, p. 1048.

Masoud, M., Pawlowicz, R., Namin, M.M., 2019. *Low frequency variations in currents on the southern continental shelf of the Caspian Sea*. *Dynam. Atmos. Oceans* 87, 101095.

Murphy, J., Riley, J.P., 1962. *A modified single solution method for the determination of phosphate in natural waters*. *Anal. Chim. Acta* 27, 31–36.

Raeisi, A., Bidokhti, A., Nazemosadat, S.M.J., Lari, K., 2020. *Mesoscale eddies and their dispersive environmental impacts in the Persian Gulf*. *Chinese Phys. B* 29, 084701.

Romero, E., Garnier, J., Lassaletta, L., Billen, G., Le Gendre, R., Riou, P., Cugier, P., 2013. *Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone*. *Biogeochemistry* 113, 481–505.

Roshan, G., Moghbel, M., Grab, S., 2012. *Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations*. *Iranian J. Environ. Health Sci. Eng.* 9, 24.

Sabet, B.S., Barani, G.A., 2011. *Field investigation of rip currents along the southern coast of the Caspian Sea*. *Scientia Iranica* 18, 878–884.

Safaian, N., Shokri, M., Jabbarian, B., 2004. *Environmental Impact Assessment of Development in the Southern Coast of the Caspian Sea (Northern Iran)*. *Polish J. Environ. Stud.* 13.

Saleh, A., Hamzehpour, A., Mehdinia, A., Bastami, K.D., Mazarheri, S., 2018. *Hydrochemistry and nutrient distribution in the southern deep-water basin of the Caspian Sea*. *Marine Pollut. Bull.* 127, 406–411.

Teodoro, A.C., 2016. *Optical satellite remote sensing of the coastal zone environment – An overview*. *Environ.Appl. Remote Sens.*, InTechOpen, London, UK, 165–196.

UNEP, 2006. *Caspian Sea*, (Stolberg, F., Borysova, O., Mitrofanov, I., Barannik, V. and Eghtesadi, P., eds.), GIWA Region. Assess. 23, p. 92.

Väli, G., Meier, H.M., Liblik, T., Radtke, H., Klingbeil, K., Gräwe, U., Lips, U., 2024. *Submesoscale processes in the surface layer of the central Baltic Sea: A high-resolution modelling study*. *Oceanologia* 66(1), 78–90. <https://doi.org/10.1016/j.oceano.2023.11.002>

Wood, E.D., Armstrong, F., Richards, F.A., 1967. *Determination of nitrate in sea water/seawater by cadmium-copper reduction to nitrite*. *J. Mar. Biol. Assoc. UK* 47, 23–31.

555 Zaker, N., Ghaffari, P., Jamshidi, S., Nouranian, M., 2011. *Cur-*
556 *rents on the southern continental shelf of the Caspian*
557 *Sea off Babolsar, Mazandaran, Iran.* J. Coast.Res. 64(SI),
558 1989–1997. <https://www.jstor.org/stable/2648252>
559 5

InPress