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Abstract

Record or near-record high or low river flows are more often observed in different regions of the world. A thriving society
must understand the magnitude of these changes in the future, mitigate their negative impacts, and be prepared to
live in a different world. That is why qualified, constantly updated scientific projections of future changes are essential.
Neither Lithuania nor the other Baltic countries have yet assessed runoff changes according to the latest climate change
projection tools outlined in the IPCC 6th AR on climate change. In this study, the HBV model was used to project
potential changes in river runoff. The ranking procedure was developed and used to select the best-fit GCMs that most
accurately reproduced the climate conditions of Lithuania. Due to the anticipated changes in climatic factors affecting
the studied rivers, the average annual discharge is projected to decrease by 12 to 42%, depending on the hydrological
region (i.e., the conditions of river runoff formation) and the selected future period. High flows (Q5) are likely to
decline very similarly to the annual ones, while low flows (Q95) are expected to decrease by approximately two-thirds
compared to the reference period. An uncertainty analysis of the projections revealed that GCMs contributed up to

two-thirds of the total uncertainty in the final results.
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1. Introduction

The sustainable development of human society and the
prosperity of all living organisms are highly dependent on
the availability of water resources. In achieving the Sustain-
able Development Goals, water is positioned at front-and-
center in the water-energy-food nexus systems (Susnik et
al.,, 2023). An overwhelming amount of scientific evidence
indicates the detrimental impact of ongoing changes on
irreversible processes in planet ecosystems (Bongaarts,
2019; Lennox et al,, 2019; Dialogue Earth, 2022; IPCC,
2023a). Freshwater ecosystems are particularly vulner-
able to human-induced climate change because (i) their
species have limited dispersal potential as the environ-
ment changes, (ii) water temperature and availability de-
pend on climate, and (iii) many of these systems are already
exposed to multiple anthropogenic stressors (Woodward
etal., 2010). Rivers are essential providers of ecosystem
services; therefore, understanding how climate change af-
fects river hydrological processes is crucial (Yeakley et al.,
2016; Etukudoh et al., 2024).

© 2025 The Author(s). This is the Open Access article distributed
under the terms of the Creative Commons Attribution Licence.

According to the most comprehensive climate change
analysis published in the IPCC Sixth Assessment Report
(AR6) (Calvin et al., 2023), there are no clear trends in
changing streamflow at the global level. However, regional
trends do emerge, with a generally increasing trend in the
northern high-latitude regions and mixed trends in the
rest of the world. Researchers are constantly looking for
a regularity or pattern that may help them understand the
processes. The runoff formation process is very complex,
and even well-established hypotheses such as the DDWW
(dry regions get drier and wet regions wetter) paradigm
(Held and Soden, 2006), which explains many tendencies,
are challenged by both observational data and modeling
studies (Yang et al,, 2019; Xiong et al., 2022).

Strong deviations in river flow from long-term histori-
cal patterns manifest as floods and droughts, posing chal-
lenges to households, public health, agriculture, energy,
transportation sectors, and many other vital sectors of hu-
man life. The most recent report on the European State
of the Climate, released jointly by the Copernicus Climate
Change Service and the World Meteorological Organiza-
tion (C3S, 2024), states that since the 1980s, Europe has
warmed at twice the global average rate, making it the
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fastest-warming continent on Earth. Key findings include
that nearly a quarter of the river network experienced
“exceptionally high” flows in December. Record or
near-record discharges were observed in major river catch-
ments, including the Loire, Rhine, and Danube, largely
due to a series of storms from October to December. In
contrast, drought conditions were reported in catchments
such as the Ebro, which had near-record low discharges in
May, and the Po, which experienced below-average flows
throughout the year, with near-record lows from Febru-
ary to April (C3S, 2024). Facing such dramatic changes,
it is crucial to understand how altered river flows and
their extremes may evolve in the future as the potential
costs of inaction may be enormous. According to the Euro-
pean Environmental Agency (EEA, 2023), between 1980
and 2022, weather- and climate-related extreme events
caused economic losses of assets estimated at EUR 650
billion in the EU Member States, of which EUR 59.4 bil-
lion occurred in 2021 and EUR 52.3 billion in 2022. Es-
timates show that each additional 0.5°C of warming in
China alone is projected to increase flood-related losses
by $67 billion, on average (Jiang et al., 2020). Therefore,
growing concerns worldwide compel us to take action to
increase resilience and adaptability to future changes. To
ensure a sustainable approach to water systems
management, the impacts of projected climate change must
be understood and incorporated into regional water man-
agement strategies (Do6ll et al., 2015). That is why, living
in such a rapidly changing environment, decision-makers
need reliable and up-to-date projections of changes
in the hydrological regime, along with assessments
of the associated uncertainties (Lane and Kay,
2021).

With increasing data and research experience, scien-
tists are rushing to improve and update climate change pro-
jections and periodically undertake large-scale model com-
parisons with the latest and most sophisticated models to
better understand the climate system'’s response to a range
of potential emission or concentration scenarios (Mein-
shausen et al., 2020). The IPCC Sixth Assessment Report
(IPCC, 2023b) that gives the most complete information
available on the subject to date has been called the stark-
est warning yet about unprecedented global changes (The
Guardian, 2021). Along with the latest IPCC report, new
state-of-the-art global climate models, known as CMIP6
models (Coupled Model Intercomparison Projects), were
released. In addition, scenarios from CMIP5, known as Rep-
resentative Concentration Pathways, were replaced with
a new range of scenarios based on Shared Socioeconomic
Pathways (SSPs) (IPCC, 2023a).

Research on river runoff projections is evolving in par-
allel with growing knowledge of global climate change. Us-
ing hydrological models enhances climate change impact
assessments by capturing the spatial and seasonal vari-
ability in hydrological responses (Piniewski et al., 2018).
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Each study typically relies on the most up-to-date genera-
tion of climate scenarios and hydrological models, which
are selected according to individual criteria (Clark et al,,
2017). In Lithuania, projections of river runoff were based
on the Special Report on Emissions Scenarios (SRES) (Kri-
aucitniené et al., 2008; Kriaucitniené et al., 2013) and the
Representative Concentration Pathways scenarios
(Stonevicius et al., 2017; Sarauskiené et al., 2018; Kri-
auciliniené et al., 2019; Jakimavicius et al., 2020; Aksti-
nas et al., 2020). To date, the studies mentioned above
for runoff predictions have used regional climate mod-
els (RCMs). However, according to the IPCC AR6, only
global climate models (GCMs) are currently available. The
present study was designed to determine the effect of
a changing climate on Lithuanian lowland river runoff ac-
cording to CMIP6-based GCMs. Many studies have shown
that GCMs are the most versatile and effective tools for cre-
ating possible future climate scenarios (Bian et al.,, 2021).
Each release of a new suite of GCMs (Eyring et al., 2016),
updated with the latest findings, provides an opportunity
to reassess the impact of a changing climate on the envi-
ronment and society. Because the performance of GCMs is
site-specific, researchers in different countries employ dif-
ferent procedures to select those that work best for the
country or region they are studying. Accomplished stud-
ies in different countries reveal different best-performing
GCMs with respect to temperature or precipitation indices
(Raju and Kumar, 2020; Igbal et al., 2021; Kurniadi et al.,
2023; Nguyen-Duy et al., 2023; Rivera, 2024; Anil et al,,
2024; Bhanage et al, 2024; Tariq et al, 2024).
However, a major limitation of global climate models is
their coarse spatial resolution, typically exceeding
1° x 1°, which is insufficient to capture local climatic fac-
tors that govern river runoff formation. Therefore, the
research team (Gebrechorkos et al., 2023) reduced the grid
size to 0.25° using statistical downscaling. The
global climate models modified in this way could be
used to simulate runoff projections in lowland river
catchments.

Neither Lithuania nor the other Baltic countries have
evaluated runoff changes according to the newest climate
change research tools presented in the IPCC AR6. There-
fore, this study examines the impact of climate change on
lowland river runoff for the first time by using SSPs and
new GCMs. From a set of 18 models, three GCMs that best
correspond to the natural conditions of Lithuania were
selected based on a proposed ranking procedure. This
work will generate fresh insight into potential changes in
average and extreme river discharge values in the near and
far future for lowland rivers. Uncertainties in river runoff
projections arising from the selected climate scenarios and
global climate models will be assessed. In the absence of
regional climate models, the developed methodology for
applying global climate models could be effectively used
for other lowland catchments.
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2. Materials and methods

2.1 Study area and data

The objects of this study are the Nemunas River and its
major tributaries: Merkys, Neris, NevéZzis, Dubysa, §e§upé,
Jura, and Minija (Figure 1). The main characteristics of
the rivers included in the hydrological modeling are pre-
sented in Table 1. As the water gauging stations of these
rivers are located at elevations of up to 78 meters above
sea level, the rivers are classified as lowland rivers. The
area of the Nemunas catchment at its mouth is 97,928 km?,
and an average discharge into the Curonian Lagoon is 605
m3 s™1. The areas of the Nemunas sub-catchments range
from 1,220 to 24,500 km?, with average discharges vary-
ing between 14 and 160 m3 s™!. Table 1 also presents
the feeding sources of the studied rivers and the seasonal
distribution of runoff (expressed as a percentage of the an-
nual runoff). In the studied region, river runoff is formed
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by groundwater, snow, and rainfall (Akstinas et al., 2022).
Groundwater supply is represented by G, snow by S, and
rainfall by R. The dominant feeding source is indicated
by a capital letter, while the following feeding sources are
marked with lowercase letters. For example, if groundwa-
ter is the dominant source of river runoff, while snow and
rainfall contribute a smaller portion, it is marked as G-sr.
The distribution of runoff throughout the year was studied
over three periods previously proposed by Gailiusis et al.
(2001).

For the development of hydrological models, daily pre-
cipitation (P, mm) and air temperature (T, °C) data from
14 meteorological stations (MS) (1. Dotnuva, 2. Kaunas,
3. Klaipéda, 4. Laukuva, 5. Lazdijai, 6. Panevézys, 7. Ra-
seiniai, 8. Silute, 9. Siauliai, 10. Teliai, 11. Ukmergé,
12. Utena, 13. Varéna, and 14. Vilnius) as well as daily
discharges (Q m3 s~1) from 11 water gauging stations
(WGS) (1. Nemunas-Druskininkai, 2.:-Merkys-Puvociai, 3.
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Figure 1. The Nemunas River catchment and subcatchments, meteorological and water gauging stations.
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Table 1. Main characteristics of the selected rivers (according to the data in the reference period).
River-WGS Catchment Altitude of Feeding Q Seasonal distribution
area, km?  WGS, m.asl.  source m3 st of runoff, %
Annual  High Low Spring Summer Autumn

flow flow (March- (May- (September-

(Q5)  (Q95) April) August) February)
Nemunas-Druskininkai 37400 77.49 G-sr 198 385 101 28.5 28.2 43.3
Merkys-Puvociai 4300 78.05 G-rs 32.1 52.7 19.5 23.0 30.2 46.8
Nemunas-Nemajtnai 42900 50.65 G-sr 240 461 127 27.8 28.8 43.4
Neris-Jonava 24500 3412 G-sr 160 318 79 28.2 27.2 44.6
Nevézis-Babtai 5780 17.54 S-rg 315 115 3.54 37.1 15.2 47.7
Dubysa-Padubysys 1840 28.97 R-sg 14.2 43.6 2.99 29.0 18.0 53.0
Nemunas-Smalininkai 81200 7.33 G-sr 478 970 246 28.4 27.1 445
Sesupé-K.Naumiestis 3180 26.96 R-sg 34.0 102 6.12 34.0 19.7 46.3
Jura at the mouth 3994 6.50 R-sg 42.6 162 6.13 24.1 13.6 62.3
Minija-Kartena 1220 18.01 R-sg 16.9 61.5 2.11 23.5 13.2 63.3
Nemunas at the mouth 97928 0.11 G-sr 605 1318 276 284 27.1 44.5

Nemunas-Nemajiinai, 4. Neris-Jonava, 5. NevéZis-Babtai, 6.
Dubysa-Padubysis, 7. Nemunas-Smalininkai, 8. Se$upé-K.
Naumiestis, 9. Jura-Taurage, 10. Seéuvis-Skirgailai, and
11. Minija-Kartena) for the period 1995-2014 were used
(Figure 1). This 20-year period was selected in accordance
with the IPCC AR6 recommendations (Calvin et al., 2023).
The data mentioned above were obtained from the hydro-
logical and meteorological yearbooks of the Lithuanian
Hydrometeorological Service under the Ministry of Envi-
ronment. Discharge projections were based on data (P
and T) from global climate models that had already been
statistically downscaled applying the bias correction con-
structed analogues with quantile mapping reordering (BC-
CAQ) method (Gebrechorkos et al.,, 2023). These data
are freely available for scientific purposes in the CEDA
(Centre for Environmental Data Analysis) database. To
identify climate models that adequately represent the cli-
matic conditions of Lithuania, P and T data from all 18
models in the CEDA database for 1995-2014 were ana-
lyzed. Using a ranking method (section 2.2.1), three cli-
mate models were chosen. Their P and T data, under the
SSP245 and SSP585 scenarios, were then applied to project
river discharge for the near (2031-2050) and far future
(2081-2100).

2.2 Methodology

The assessment of changes in the Lithuanian rivers’ runoff
according to SSP scenarios and global climate models was
carried out in four stages. In the first stage, three out of 18
global climate models (already statistically downscaled)
that most accurately represent the climatic conditions of
Lithuania were selected. In the second stage, hydrological
models of the rivers were developed, calibrated, and vali-
dated. In the third stage, river discharge was simulated for
the near and far future using the selected climate models
and the created hydrological models, under the two most

commonly applied SSP scenarios (SSP245 and SSP585). In
the fourth and final stage, the contributions of global cli-
mate models (GCM) and SSP scenarios to the uncertainties
in runoff projections were quantified.

2.2.1 Climate model selection

Hydrological modeling based on the output data of GCMs
is often used to assess future changes in river runoff. The
mostrecent SSP scenarios and GCMs, proposed by the Sixth
Assessment Report (IPCC, the Sixth Assessment Report
(AR6)), are currently being applied. A large amount of data
(P and T) from these climate models is available in open-
source databases. However, in river hydrological modeling,
it is important to choose models that accurately represent
the climatic conditions of the study area. In practice, two
approaches are commonly applied for this purpose: 1)
based on the output data of all available GCMs, the median,
lower and upper limit of the applied ensemble are derived,
and 2) all available GCMs are used to simulate the past
climate conditions and the best-performing GCM is then
selected. The first approach provides a broad spectrum of
future climate parameters, which will not always precisely
capture the local climatic patterns. Meanwhile, the second
approach is based on the assumption that climate models
capable of reproducing the past climate with satisfactory
accuracy are likely to provide more reliable projections of
future conditions. Therefore, it was decided to apply the
second approach, i.e., to select three climate models and
use their average output data to project the discharge of
rivers in the Nemunas catchment for the near (2031-2050)
and far (2081-2100) future.

Five parameters were used for model selection: daily
Q-Q plot, monthly standard deviation, and the minimal,
average, and maximum values of precipitation and tem-
perature. All five parameters were assigned equal weights
because, in the absence of prior information favoring any
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Table 2. Calibration and validation results of hydrological models.
Subcatchments Calibration Validation
r NSE RE, % r NSE RE, %

Nemunas at Druskininkai 0.85 0.69 -1.48 0.76 0.50 1.40

Merkys 0.81 0.54 0.23 0.82 0.59 -0.20

Nemunas at Nemajunai 0.85 0.69 -2.28 0.76 0.51 2.18

Neris 0.84 0.61 4.16 0.85 0.59 -3.76

Nevézis 0.84 0.70 -0.70 0.76 0.50 1.31

Dubysa 0.85 0.73 -0.41 0.78 0.60 0.43

Nemunas at Smalininkai 0.86 0.72 -0.69 0.79 0.52 0.71

Seéupé 0.89 0.79 2.61 0.76 0.51 -2.14

Jura 0.87 0.74 4.14 0.86 0.73 -3.85

Minija 0.85 0.72 -1.88 0.84 0.70 1.83

Nemunas at the mouth 0.90 0.81 0.12 0.83 0.60 0.12

Table 3. Summary of global climate model ranking results.
Precipitation, P Air temperature, T

Models Q-Qplot Avera-ge STDEV MIN MAX Q-Qplot Average = STDEV MIN MAX SUM  RANK
ACCESS-CM2 143 146 59 131 117 107 106 125 213 156 1303 10
BCC-CSM2-MR 99 98 141 120 124 113 113 129 73 173 1183 4
CESM2 98 99 217 118 210 184 181 129 76 161 1473 14
CMCC-CM2-SR5 101 98 112 124 108 147 147 107 83 89 1116 2
CMCC-ESM2 107 109 94 152 123 83 81 155 232 158 1294 8
GFDL-ESM4 147 145 142 103 128 122 122 156 126 160 1351 11
HadGEM3-GC31-LL 168 168 186 128 177 215 214 200 76 100 1632 18
[ITM-ESM 205 212 92 149 127 128 126 111 172 97 1419 12
INM-CM4-8 161 160 142 83 131 177 178 114 121 154 1421 13
INM-CM5-0 139 137 202 105 151 96 98 124 91 152 1295 9
IPSL-CM6A-LR 96 94 165 190 115 139 139 121 59 135 1253 6
KACE-1-0-G 112 111 115 99 126 84 83 115 113 209 1167 3
MIROC-ES2L 97 97 67 161 107 113 113 112 100 61 1028 1
MIROC6 123 121 94 169 107 163 164 138 97 91 1267 7
MPI-ESM1-2-LR 163 160 123 135 140 138 138 120 250 117 1484 15
MRI-ESM2-0 170 167 90 163 117 192 195 187 102 105 1488 16
NorESM2-MM 167 170 229 166 155 96 97 107 192 192 1571 17
UKESM1-0-LL 98 102 124 98 131 97 99 144 218 84 1195 5

specific parameter, equal weighting was considered a neu-
tral and unbiased approach. Consequently, each parameter
contributed equally to the overall ranking of the GCMs, with
no single parameter regarded as more influential than the
others. Following the recommendations of AR6, model
performance was assessed against observations for the
period 1995-2014. In the first step, the five parameters
were calculated from observational data at 14 MSs. In the
second step, the same parameters for the same 14 MSs
were calculated based on the outputs of 18 GCMs. In the
third step, the values obtained from the observational data
were compared with those derived from the outputs of
GCMs. The climate model, according to the data of which
a specific parameter value calculated for a specific MS was
the closest to the observational one, was assigned a rank
of 1, the second most similar a rank of 2, the third a rank of

3, etc. In the fourth step, the ranks of the five precipitation
indicators and the five air temperature indicators were
summed up. The model with the lowest total rank over all
14 MSs was considered the most suitable for the studied
area, followed by the second lowest, and so on.

2.2.2 Discharge projection of the Nemunas River catchment
using the HBV hydrological model
The HBV (Hydrologiska byrdns vattenbalansavdelning)
model, developed at the Swedish Meteorological and Hy-
drological Institute (Bergstrom, 1992), was used to project
the runoff of the Nemunas River catchment according to
global climate models and Shared Socioeconomic Path-
way scenarios. This hydrological model is widely used
to address the impact of climate change on river hydrol-
ogy (Pervin et al,, 2021). Even though this software was
originally developed in the early 1970s, it has undergone
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continuous improvements. This model requires relatively
limited input data, including precipitation, air tempera-
ture, and geographical information of the river catchment
for which runoff is modeled (catchment area, height above
sea level, forest cover, lake cover, MS-defined catchment
area). Due to its relative simplicity, various versions of the
HBV model have been applied in more than 30 countries
across diverse climatic conditions, e.g., Sweden, Zimbabwe,
India, Colombia (Bergstrom, 1992). The HBV has also been
successfully applied in our previous studies (Jakimavicius
etal, 2018; Akstinas et al., 2020).

The model calculations were performed in three steps.
In the first step, the amount of precipitation that reaches
the ground was estimated. In the second, slope runoff was
simulated; and in the third, river discharge and its transfor-
mation within the watercourse were
evaluated.

The HBV model is based on the water balance equation
(IHMS, 2005):

d
P=E=Q=—[SP+SM+UZ+LZ+V] (1)

where P is precipitation, E is evaporation, Q is discharge,
SM is soil moisture, SP is snowpack, UZ is upper ground-
water zone, LZ is lower groundwater zone, and V is lake
or dam volume.

For the development of the Nemunas River hydrolog-
ical model, daily discharge data from 11 WGSs, as well
as air temperature and precipitation data from 14 MSs,
were used (Figure 1). The same information about the
modeled catchment area, the presence of lakes and forests
as well as mean elevation above sea level was used for
both the reference period and the projections. The hy-
drological model consisted of 11 subcatchments: the Ne-
munas at Druskininkai, Nemajinai, Smalininkai, and its
mouth, together with its main tributaries in sequence - the
Merkys, Neris, Nevézis, Dubysa, Seéupé, Jura, and Minija
(Figure 1).

Following the recommendations of IPCC AR6 (Calvin
etal, 2023 ), the period from 1995 to 2004 was selected
for model calibration, whereas the period 2005-2014 was
used for validation. The calibration procedure involved
adjusting 16 model parameters and comparing calculated
discharge values with the observed ones. Four groups of
calibration parameters were used in the calibration pro-
cess (IHMS, 2005): the model parameters that (i) control
general runoff volume over the total calibration period,
(ii) describe snow accumulation and melting intensity, (iii)
characterize the moisture accumulated in soil, and (iv) de-
fine the extremes (river floods and droughts) in discharge
hydrograms. During the spring flood, the most important
calibration parameters for runoff modeling are related to
snowmelt and soil moisture storage, while during the low
water period - the parameter that determines river under-
ground feeding (Kriaucitiniené et al., 2013).
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Ideally, the correlation coefficient (r) should approach
1; however, values above 0.7 are considered acceptable
for proper calibration (IHMS, 2005). Similarly, the hy-
drological model can be regarded as calibrated when the
Nash-Sutcliffe efficiency (NSE) exceeds 0.5 (Ritter and
Mufioz-Carpena, 2013). Calibration and validation results
for each subcatchment are presented in Table 2. Based on
the obtained values of r, NSE, and RE (difference between
observed and calculated discharge), it was decided that
the hydrological model of the Nemunas River is ready to
perform discharge projections for the near and far future
using climate models data.

2.2.3 Estimation of uncertainty sources in projected runoff
of the Nemunas River catchment

This study considered uncertainties in runoff projections
arising from the selection of global climate models and
SSP scenarios. All possible combinations (24 combina-
tions for each of the eight rivers, i.e. (3 GCMs X 2 scenar-
ios + 2 scenarios X 3 GCMs) X 2 periods (near and far fu-
ture)) of uncertainty sources were analyzed to identify the
two main sources of uncertainty. The assessment was con-
ducted in four steps: 1) river discharge was calculated for
each model and SSP scenario for the near and far future;
2) the differences between the lowest and highest water
discharges under GCMs or SSP scenarios were estimated
separately for each period; 3) the average of discharge dif-
ferences was calculated for the scenarios and GCMs sepa-
rately in the near (2031-2050) and far (2081-2100) future
periods; 4) the relative contribution (%) of each model and
scenario to the overall uncertainty was quantified based
on these discharge differences.

For comparison, three models with the lowest ranking
scores (Figure 2b-d) and three with the highest scores are
presented (Figure 2e-g). A visual assessment revealed that
the distributions of the lowest-ranking models differed
only slightly from the distribution derived from observa-
tional data. Therefore, we assumed that if these models
were able to reproduce past climate conditions with suf-
ficient accuracy, then their future predictions should be
suitable for the assessment of the climate conditions in the
studied region.

3. Results

3.1 Climate model selections

Based on the methodology presented in section 2.2.1, daily
Q-Q plots, monthly standard deviations ( STDEV), minimal,
average, and maximum values (of P and T) were calcu-
lated for 14 MSs using both observed data and output data
from 18 GCMs. The results were arranged and summa-
rized over all MSs (Table 3). The ranking results showed
that the applied models received different scores depend-
ing on the evaluation criteria. If considering only the ac-
curacy of P projections, the IPSL-CM6A-LR model exhib-
ited the smallest deviations from the actual data according
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Figure 2. Comparison of observed (a) precipitation distributions with global climate models that scored the lowest (b-d)

and highest (e-g) ranks.

to the Q-Q area and the average monthly P. The ACCESS-
CM2 distinguished itself in terms of STDEV. Meanwhile,
the INM-CM4-8, MIROC-ES2L, and MIROC6 models stood
out when evaluating the monthly min and max P, respec-
tively. The evaluation of T projections yielded somewhat
different results. The CMCC-ESM2 model demonstrated
the best performance in terms of the Q-Q area and average
monthly T. Considering the average monthly T variability
(STDEV), the CMCC-CM2-SR5 and NorESM2-MM got equal
ranks. The minimum T was most accurately projected by
the IPSL-CM6A-LR, and the maximum by the MIROC-ES2L
model.

The river discharge was projected by applying P and
T data according to various scenarios. Therefore, the se-
lected GCMs (or their ensemble) must provide the most
accurate possible estimates of both indicators. After sum-
marizing all ranking criteria, we found that in the historical
period, STDEV of P and T from actual observations were the
smallest in the case of three models: MIROC-ES2L, CMCC-
CM2-SR5, and KACE-1-0-G. Additionally, a visual compar-
ison of the distributions of the selected models’ outputs
was performed. The distribution of average monthly P data
was compiled based on the observation data from 14 MSs
in the reference period (Figure 2a).

3.2 Changes in the conditions of runoff formation in
the Nemunas River catchment according to global
climate models and SSP scenarios

The runoff of Lithuanian rivers is shaped by physical-geo-

graphical and climatic conditions. Based on regional differ-

ences in these conditions, three hydrological regions are
distinguished: western (W-LT), central (C-LT), and south-
eastern (SE-LT) (Akstinas et al,, 2022) (Figure 3). In W-LT,
the greatest amount of precipitation falls. Combined with
steep river slopes and favorable conditions for rapid water
flow, this results in rivers being predominantly rain-fed,
with rainfall accounting for 62% of their total runoff. In

C-LT, river slopes are small, and impermeable soils are

widespread, which creates more favorable conditions for

evaporation. Summer precipitation is low, and the under-
ground supply is scarce (17%), so rivers become even more
depleted. In SE-LT, the relief is gradually rising, which in-
creases river slopes. Runoff in this region is determined
by a higher amount of precipitation compared to C-LT and
abundant underground feeding (55%). Due to the reasons
above, rivers here carry more water than in C-LT but are
less watery than in W-LT.

Before analyzing future changes in river discharge, it
should be helpful to find out how runoff formation con-
ditions would change under the applied GCMs and SSPs
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Figure 3. Hydrological regions of Lithuania (based on Akstinas et al., 2022).

across the different hydrological regions.

It was determined that P and T would change consid-
erably in the future. As shown in Figure 4, across all hy-
drological regions, projected changes in T are going to be
very similar. Based on the average of three models, the
mean annual T during the reference period (1995-2014)
was 7.4°C in W-LT, 7.2°C in C-LT, and 6.9°C in SE-LT. In the
near future (2031-2050), no significant differences were
identified between the applied scenarios. Under the most
likely SSP245 scenario, T would rise by 2.2-2.3°C in the
studied hydrological regions, and under the pessimistic
SSP585 scenario by 2.5-2.8°C compared to the reference
period. Considerably larger differences are possible in the
far future (2081-2100): under SSP245 scenario, T would
increase by 3.5-3.8°C, whereas, under the SSP585, from
5.8°C to 6.4°C depending on the hydrological region.

Analysis of seasonal air temperature changes does not
indicate significant differences between the scenarios in
the near future. The smallest increase is projected for au-
tumn (1.8-2.4°C), a moderate rise for spring and summer
(2.1-3.0°C), and the largest increase for winter (2.4-3.0°C).
There would be no clear trends in seasonal temperature
rise in the far future, but there will be apparent differences
between scenarios. According to the SSP245 scenario, air
temperature (depending on the region) is likely to rise

by 3.2-3.4°C in autumn, 3.3-3.7°C in spring, 3.5-3.8°C
in winter, and 3.8-4.2°C in summer. Meanwhile, under
the SSP585 scenario, substantially greater warming is ex-
pected: up to 5.9°Cin spring, 6.0°C in autumn, 6.5°C in win-
ter, and 7.0°C in summer. Regional comparisons show that
W-LT is likely to experience the smallest changes, whereas
C-LT and SE-LT are projected to undergo the greatest in-
creases relative to the reference period.

Based on the data from three GCMs, in the reference
period, the highest amount of precipitation, 811 mm per
year, was determined in the river subcatchments located
in W-LT. In C-LT and SE-LT, P was 643 and 673 mm per
year, respectively. Projections made using GCMs data un-
der the SSP245 scenario revealed that in the near future, P
should be from 2.2% (W-LT) to 3.8% (SE-LT) higher than
in the reference period (Figure 4). In contrast, under the
SSP585 scenario, P is expected to decline slightly, by 1.1%
in W-LT and 1.8% in C-LT. In the far future, the most pro-
nounced positive changes are projected for W-LT (5.0%
under SSP245 and 3.0% under SSP585), followed by C-LT
(3.3% and 2.1%, respectively), while the smallest increases
would be in SE-LT (2.6% and 1.4%). Although the aver-
age annual precipitation may change slightly, significant
positive and negative changes in the seasonal amount of
precipitation are projected. The most significant positive
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Figure 4. Projection of air temperature (°C) and precipitation (mm) in the western (a), central (b), and south-eastern (c)

hydrological regions of Lithuania.

changes of P are expected in winter. In the near future, win-
ter precipitation is expected to rise by 10.2-17.7%, and
in the far future, by 18.9-33.7%), relative to the reference
period. Spring is expected to experience smaller positive
changes: precipitation is likely to increase by up to 6.3% in
the near future, depending on the region and scenario, and
by up to 18.0% in the far future. In contrast, significant
negative changes in precipitation are projected for summer.
In the near future under the SSP245 scenario, precipita-
tion may decline by up to 3.9% in W-LT and C-LT, while
SE-LT may experience anincrease of up to 2.4%. However,
according to the SSP585 scenario, summer precipitation
would decrease from 13.2% to 16.4%, depending on the
hydrological region. In the far future, the most substantial
decreases are expected in summer, ranging from 14.2% to
23.2%. Meanwhile, in autumn, both negative and positive
changes in precipitation are expected, depending on the
projection period. In the near future, the slightest negative
changes would be in W-LT (up to 2.0%), more significant
in C-LT (up to 3.9%), and the largest in SE-LT (up to 5.9%).
However, in the far future, the amount of precipitation is
expected to increase by 0.6-2.9% relative to the reference
period.

3.3 Projections of the Nemunas River catchment dis-
charge in the near and far future

Discharge simulations for the near (2031-2050) and far

(2081-2100) future were carried out using the outputs of

three GCMs (MIROC-ES2L, CMCC-CM2-SR5, and KACE-1-

0-G) under two SSPs (SSP245 and SSP585). The results
were compared with the results of discharge simulations
of the same models for the reference period (1995-2014).
The estimated changes in Lithuanian river discharge had
different regional patterns. Therefore, the analysis was
performed at two spatial scales: the entire Nemunas catch-
ment and individual hydrological regions, with one repre-
sentative river selected from each region (Neris River for
SE-LT, NevéZis for C-LT, and Minija for W-LT). Based on the
results, projected changes in average annual, high (Q5),
and low (Q95) flows were assessed for the near and far
future periods.

The projected changes in climate parameters are likely
to significantly reduce the Nemunas discharge in both stud-
ied future periods (Figure 5a). In the near future, the aver-
age annual discharge is projected to decrease from 15.1%
to 23.5%, while in the far future, from 24.2% to 41.7%
compared to the reference period (Table 4).

The Nemunas River catchment covers 75% of Lithua-
nia’s territory and extends across all three hydrological re-
gions, resulting in diverse river feeding conditions
(Figure 3). In the far future, according to the most unfavor-
able scenario (SSP585), a considerable decrease in the dis-
charge of the Nemunas River is expected, primarily driven
by a pronounced temperature rise of 5.8-6.4°C across dif-
ferent hydrological regions. Although precipitation would
increase slightly (1.4-3.0%) under the SSP585 scenario,
this increase would not be sufficient to significantly reduce
discharge in the long term. The Neris catchment is mainly
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Figure 5. Nemunas (a), Minija (b), Nevézis (c) and Neris (d) discharge projections in the near and far future compared to

the reference period.

located in SE-LT, where groundwater feeding is predomi-
nant (Figure 3). As a result, the projected changes in the
Neris are less notable than in the Nemunas catchment. Un-
der both scenarios, the average annual discharge of the
Neris would decline by 11.9-21.0% in the near future and
by 19.9-34.7% in the far future, compared to the reference
period (Figure 5d). In the Minija catchment, from W-LT,
where precipitation is the primary source of river feeding
(Figure 3), the discharge trend is different. Since W-LT is
also projected to have more precipitation in the future, the
Minija River is expected to experience the smallest reduc-
tion in discharge among the studied rivers: 14.3-15.9% in
the near future and 15.3-26.7% in the far future, compared
to the reference period (Figure 5b). The runoff formation
of the Nevézis River, located in C-LT, depends on both rain-
fall and snowmelt. However, in the far future, snowmelt
floods are less likely, so its average annual discharge is
projected to decrease more significantly, by 24.1-38.6%
(Figure 5c).

The analysis revealed that the average annual discharges
of all studied rivers are projected to change: the small-
est changes are expected in the near future, while signifi-
cantly larger changes are anticipated in the far future. Un-
der the SSP245 scenario, the changes would be smaller,
whereas under SSP585 they would be more pronounced.
When comparing different hydrological regions, the results
indicate that both in the near and far future, the small-
est changes are possible in rivers from W-LT, moderate
changes in rivers from SE-LT, and the largest changes in
rivers from C-LT.

It was established that in all studied rivers, the high
flows (Q5, typically associated with spring floods) and low
flows (Q95, representing river water content during the
dry season) would decrease considerably, though in dif-
ferent ways (Table 4). The most remarkable changes are
expected in the far future when spring flood discharges
(with a 5% probability) are projected to decline to a similar
extent as the annual discharges. This means that floods
would decline most significantly in the far future under the
SSP585 scenario, as substantially higher air temperatures
(especially during the winter season) are likely to prevent
the formation of snowmelt-driven floods. The river dis-
charge during the dry season (of a 95% probability) is also
going to change drastically in the long term in the case of
the SSP585 scenario, decreasing from 71.2% (in the Nemu-
nas) to 81.5% (in the Minija) (Table 4). This may be due
to the projected increase in summer temperatures (by up
to 7.0°C) and the simultaneous reduction in precipitation
compared to the reference period.

3.4 Estimation of uncertainties in the projections of
the Nemunas River catchment discharge
The accuracy of river runoff projections depends on sev-
eral factors, including the selected hydrological model pa-
rameters, the SSP scenario, and the global climate model
(GCM). In this study, uncertainties in water flow projec-
tions were assessed only on the basis of climate models
and SSP scenarios. The impact of hydrological model pa-
rameters and climate scenarios on runoff modeling results
was estimated several years ago by the authors of this ar-
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Table 4. Changes in discharge in the near and far future
compared to the reference period.

2031-2050 2081-2100

River Discharge SSP245  SSP585 SSP245  SSP585
Nemunas Q5 -22.3 -22.9 -28.7 -36.9
Average -15.1 -23.5 -24.2 -41.7
Q95 -29.8 -47.6 -41.5 -71.2
Minija Q5 -15.0 -12.4 -14.4 -19.9
Average -14.3 -15.9 -15.3 -27.6
Q95 -44.6 -64.2 -61.3 -81.5
Nevézis Q5 -27.5 -27.2 -31.2 -37.2
Average -18.6 -23.8 -24.1 -38.6
Q95 -36.9 -51.1 -55.1 -77.4
Neris Q5 -16.1 -17.0 -22.1 -27.9
Average -11.9 -21.0 -19.9 -34.7
Q95 -24.2 -45.7 -42.6 -73.3

ticle (Kriauciuniené et al., 2013). In both this study and
the previous one, river runoff was modeled using the HBV
software. For consistency, the same rivers - the Neris and
the Merkys - were selected for the analysis. Therefore,
the results reported by Kriauciuniené et al. (2013) pro-
vide valuable insights into the influence of hydrological
model parameters on the uncertainties in water discharge
projections. That assessment showed that, for the Merkys
River, the accuracy of runoff projections was determined
by model parameters (7.2%), SSP scenarios (60.9%), and
GCM (32%). For the Neris River, the corresponding contri-
butions were 5.6%, 64.4%, and 30%, respectively. A pre-
vious assessment of uncertainties confirmed that, in the
studied rivers, hydrological model parameters represent
the smallest source of uncertainty compared with climate
models or SSP scenarios. Therefore, this study assessed
only the uncertainties associated with the three selected
global climate models and two SSP scenarios.

The uncertainty of river projections was analyzed sepa-
rately for the entire Nemunas catchment and sub-
catchments representing three hydrological regions: the
Minija and the Jira in W-LT, the geéupé, the Dubysa, and
the NevéZis in C-LT, and the Neris and the Merkys in SE-
LT. The analysis revealed that in the Nemunas discharge
projections for the near future, SSP scenarios and climate
models had an equal impact on the final result (50% each)
(Figure 6). Meanwhile, in the case of the far future, the
influence of scenarios decreased to 38%, while that of cli-
mate models increased by 62%. Somewhat different reg-
ularities were established in the studied sub-catchments.
In the near future, climate models accounted for 61% and
60% of the uncertainty in W-LT and C-LT, respectively, com-
pared to 50% in SE-LT. This could be explained by differ-
ences in hydrological regimes: groundwater contributes
14%, 17%, and 55% of the discharge in W-LT, C-LT, and

11/17

SE-LT, respectively, and the rest consists of rainfall and
snowmelt. Therefore, the response to climate change is
more pronounced in W-LT and C-LT than in SE-LT. Even
though in the near future, the influence of climate models
on discharge projection results depending on hydrological
regions has been clearly expressed, in the far future, these
regional differences would disappear due to increasing
climate extremes. Thus, in the far future, the influence
of climate models should be very similar across all river
sub-catchments from different hydrological regions, ac-
counting for 63%, 64%, and 64%, respectively, with the
remainder attributable to SSP scenarios.

4. Discussion

Scientific studies show that climate change strongly affects
water resources, causing record high or low river flows
worldwide. To adapt, society needs reliable, up-to-date
scientific projections to mitigate risks and prepare for the
future. To find the best-performing global climate mod-
els for projecting runoff in selected Lithuanian lowland
rivers, five ranking parameters were applied: the daily
Q-Q plot, monthly standard deviation, and minimal, av-
erage, and maximum values of precipitation and temper-
ature. Eighteen GCMs from CMIP6 were ranked accord-
ing to these selected parameters. Three GCMs, namely,
MIROC-ES2L, CMCC-CM2-SR5, and KACE-1-0-G, received
the highest scores. As the best representatives of Lithua-
nian climate conditions, the outputs of these models were
subsequently used as inputs for hydrological simulations
made for the near (2031-2050) and far (2081-2100) fu-
ture periods. The general trends obtained in the recent
runoff projections were quite similar to those reported
in previous studies indicating a decline in spring floods
and summer low flows, alongside an increase in winter
discharge. However, in some cases, the scale of projected
changes was greater if compared to the ones identified
according to previous CMIP5 climate projections. Earlier
assessments of future annual runoff revealed decreases of
up to 24% (Sarauskiené et al,, 2018), 31% (Jakimavicius et
al,, 2020), and 40% (Kriaucitiniené et al., 2019) under the
most extreme scenarios in the far future. These results are
consistent with the present findings showing a possible
decline in this hydrological parameter from 26.7% (in the
Minija) to 41.7% (in the Nemunas) under the most unfa-
vorable scenario. Regarding dry season discharge in the
far future, the present study suggests decreasing to almost
70-80% in individual catchments. In contrast, the previ-
ous findings based on CMIP5 tools indicated summer low
flow reductions of only 28-43% (Sarauskiené et al., 2018).
Our findings indicate that the most significant changes are
expected in the central hydrological region of Lithuania,
where river catchments are considered particularly sensi-
tive to climate change. This is consistent with the results
reported by other authors (Nazarenko et al., 2023). The
significant negative trends in low flows observed in this
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Figure 6. Uncertainties of the discharge projections in the near (NF) and far future (FF).

region in the past (Nazarenko et al,, 2022), together with
flow intermittency phenomena (Sarauskiené et al., 2020),
indicate that this process is not new but has been ongoing
for some time.

The magnitude of projected annual runoff reported in
other studies exhibits considerable variation depending
on the specific regions and geographical contexts exam-
ined. Such variability is observed not only in large-scale
global and continental assessments (e.g., Donnelly et al,,
2017; Duanetal, 2017; Yangetal, 2017; Bréda etal.,, 2020;
Guan et al,, 2021; Kis and Pongracz, 2024) but also in more
localized, national-scale investigations (e.g;, Piniewski et
al,, 2018; Muelchi et al., 2021; Dallison et al.,, 2022; Mur-
phy et al., 2023) that share methodological similarities
with the present study. Interestingly, despite differences
in catchment characteristics, some seasonal projections
across these studies display notable similarities - for in-
stance, increases in projected discharge during winter
(Piniewski et al., 2018; Afzal et al., 2020; Muelchi et al.,
2021; Sleziak et al., 2021; Dallison et al., 2022; Kis and
Pongracz, 2024), decrease in summer (Afzal et al., 2020;
Sleziak et al., 2021; Dallison et al., 2022). One possible rea-
son for the differences in future runoff simulation results
may be the peculiarities of the CMIP6 models. Compared
to the IPCC ARS5, precipitation projections in the GCMs
from ARG indicate a stronger drying trend, which extends
even to parts of northern Europe (Palmer et al.,, 2021).
The higher global climate sensitivities of CMIP6 models
determine higher summer temperatures in northern Eu-

rope as well. Another possible reason for the identified
differences is the variation in grid resolutions among cli-
mate models. Using regional climate models (RCMs) with
higher spatial resolution is recommended to obtain more
accurate runoff projection results. Unfortunately, RCMs
for AR6 have not yet been developed; therefore, this study
used global climate models with output data already down-
scaled to a 0.25° X 0.25° grid, which may still be too coarse
for catchment-scale modeling. In general, each new Phase
of the Coupled Model Intercomparison Project is expected
to improve model performance - just as CMIP6 GCMs are
anticipated to deliver more reliable and comprehensive
projections (Wei et al., 2023). Previous studies comparing
the performance of CMIP6 GCMs with those from the ear-
lier CMIP5 generation generally demonstrate an improved
ability of the newest models to reproduce various temper-
ature and precipitation patterns across different regions
of the world (Chen et al.,, 2020; Grose et al., 2020; Gusain et
al,, 2020; Kim et al., 2020; Xin et al., 2020; Gebresellase et
al,, 2022; Martel et al., 2022; Wei et al,, 2023). There is no
doubt that the use of combined SSP-RCP pathways, rather
than RCP emission scenarios, also influences the present
results, as these pathways account for socio-economic in-
dicators. The incorporation of Shared Socioeconomic Path-
ways provides a framework for accounting for potential
socioeconomic developments at the global scale, thereby at
least partially addressing uncertainties related to human-
induced impacts on runoff conditions. Nevertheless, in
this river runoff projection study, the limitations of model
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simulations concerning human influences are unavoidable,
as future modifications in catchment management, land
use, hydraulic infrastructure or other anthropogenic inter-
ventions cannot be reliably predicted.

Additionally, this study involved an uncertainty assess-
ment, which is considered a very important part of the
whole climate modeling process and may contribute to
improving the applied modeling techniques (Tian et al.,
2016; Vetter et al,, 2017; Kundzewicz et al., 2018). Un-
certainty ranges in the discharge projections made for
the selected lowland rivers under the chosen GCMs and
SSP scenarios for the near future diverged. For the rivers
less dependent on precipitation, the influence of selected
models and scenarios on runoff modeling results was very
similar, whereas, in predominantly rain-fed and snow-fed
rivers, the uncertainty attributable to GCMs accounted for
60-61% of the projection results. In contrast, for the far fu-
ture, the influence of the used GCMs and SSPs on the runoff
projections was found to be very similar for all rivers, with
more than 60% of the uncertainty from GCMs and the re-
mainder from SSPs. Even though the influence of river
feeding characteristics on discharge projections is clearly
expressed in the near future, these differences will disap-
pear in the far future, likely due to increasing climate vari-
ability. Similar findings were also reported by Hattermann
etal. (2018), who determined that uncertainty associated
with GCMs is most pronounced during the seasons and
in the regions where the river flow regime is dominated
by precipitation. Many studies accomplished using CMIP6
climate forcing models and scenarios (Wen et al., 2021;
Haider et al,, 2023; Nufiez Mejia et al., 2023) as well as
those employing CMIP5 tools (Tian et al,, 2016; Su et al,,
2017; Vetter et al,, 2017; Senatore et al., 2022; Jeantet
etal, 2023) have demonstrated that the choice of repre-
sentative GCMs has a significant impact on the outcomes
of climate impact assessments. In many cases, the domi-
nant source of uncertainty in modeling results stems from
the choice of GCMs rather than from the selection of emis-
sion scenarios. Moreover, different techniques selected
for the ranking procedure may produce different sets of
suitable GCMs for the studied river catchments. Although
there is no universally accepted method for ranking GCMs,
and the process remains inherently subjective (Anil et al.,
2021), it can still be an excellent way to reduce uncertainty
in the final result (Rahman and Pekkat, 2024). The high
GCM-related uncertainty poses significant challenges for
decision-makers and water resource managers, making it
difficult to develop robust adaptation strategies. Projected
changes in runoff patterns affected by this uncertainty may
have serious implications for water availability, ecosystem
health, agriculture, and flood risk management in affected
regions. Therefore, further research is needed to better
understand the sources of GCM uncertainty (Hattermann
etal,, 2018) and to improve selection methodologies. This
will ultimately enhance the robustness of climate change
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impact assessments and support more effective policymak-
ing.

5. Conclusions

This study developed and applied a ranking procedure
based on five criteria to identify the best-performing GCMs,
thereby enhancing the reliability of runoff projections.
Based on this approach, three climate models - MIROC-
ES2L, CMCC-CM2-SR5, and KACE-1-0-G - were identified
as best representing Lithuania’s climatic conditions. Ac-
cording to the selected GCMs, significant future changes
in air temperature and precipitation were estimated. Tem-
peratures were projected to rise by up to 2.8°C in the near
future and up to 6.4°C in the far future, with the most
pronounced seasonal increases occurring in winter and
summer. Changes in annual precipitation were relatively
modest , with increases up to 5%. Seasonal variability
was anticipated to be greater, with winter precipitation
potentially increasing by as much as 33.7% and summer
precipitation decreasing by up to 23.2%, depending on the
region and scenario. Runoff projections revealed a sub-
stantial decline, with an average annual runoff decreasing
by 12-24% in the near future and 15-42% in the far fu-
ture, relative to the reference period. Notably, low flow
conditions (Q95) were projected to diminish by approxi-
mately two-thirds in the far future, posing critical risks for
hydrological regimes. The uncertainty assessment high-
lighted that selected GCMs contributed up to two-thirds
of the total uncertainty, confirming the utility of the rank-
ing method for model selection in the absence of regional
climate models.

Despite limitations due to low climate model resolu-
tion, this study improves our understanding of future low-
land river runoff changes. The use of newly developed
regional climate models will likely enhance the accuracy
of Lithuanian runoff projections.
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