

Spread of the warm-water clam *Rangia cuneata* in the temperate coastal waters of the Gulf of Gdańsk (southern Baltic Sea)

Halina Kendzierska^{1,*}, Zuzanna Czenczek¹, Anna Dziubińska¹,
Kamila Styrcz-Olesiak¹, Agata Rychter², Michał Gintowt³, Urszula Janas¹

Abstract

The Atlantic wedge clam or common rangia, *Rangia cuneata*, was reported in the Gdańsk Basin (southern Baltic Sea) around 2010. In the Gulf of Gdańsk, outside the Vistula Lagoon, specimens of the common rangia were collected for the first time in 2014. This paper reports on the spread of the species in the coastal waters of the Gulf of Gdańsk following its arrival.

Keywords

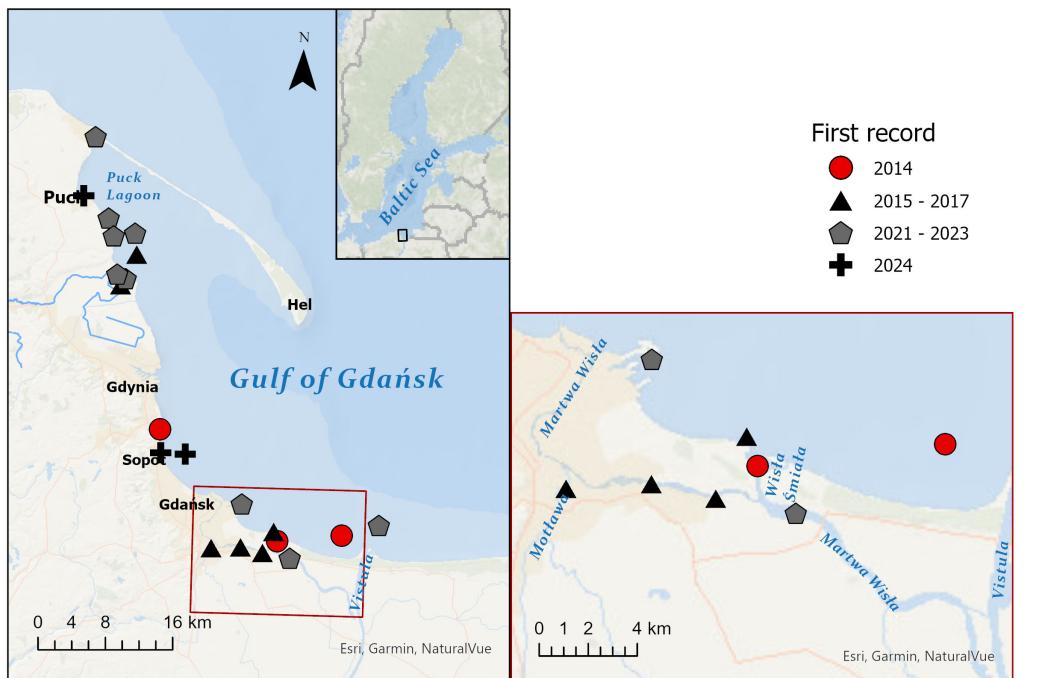
Rangia cuneata; Baltic Sea; Gulf of Gdańsk

¹University of Gdańsk, Poland

²University of Applied Sciences in Elbląg, Poland

³Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland

*Correspondence: halina.kendzierska@ug.edu.pl (H. Kendzierska)

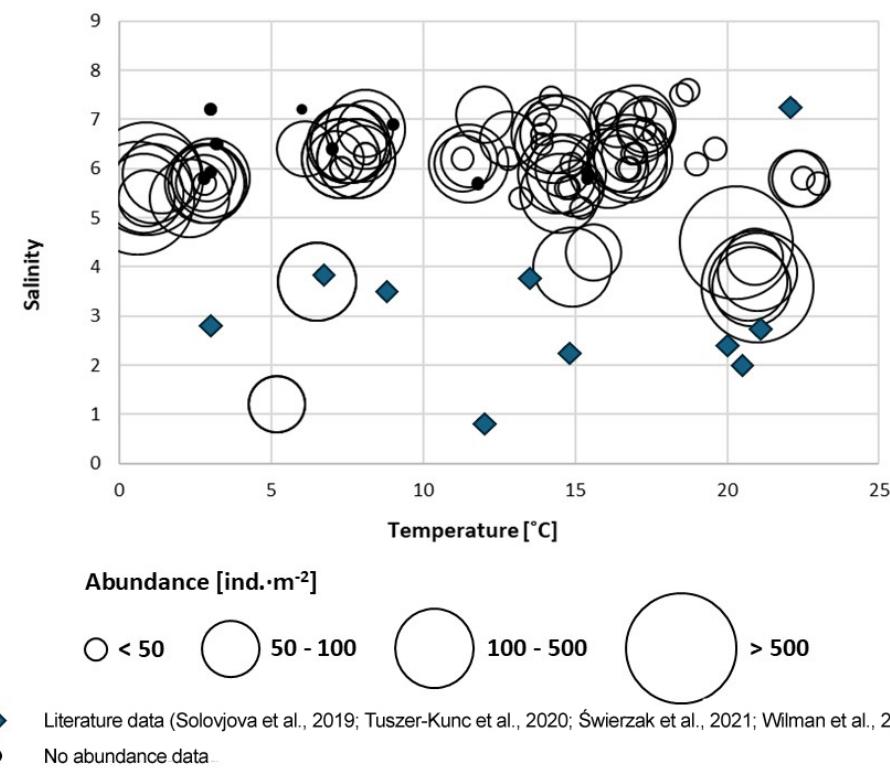

Received: 29 September 2025; revised: 1 December 2025; accepted: 8 December 2025

The aim of this paper was to present observations of the common rangia *Rangia cuneata* (GB Sowerby I, 1831) in the Gulf of Gdańsk (southern Baltic Sea) in 2014–2024 and to summarise the environmental conditions in which it occurs in the Baltic Sea. The common rangia is a Macridae clam native to the Gulf of Mexico (Hopkins, 1970; LaSalle and de la Cruz, 1985). In the Baltic Sea, at least two-year-old specimens of this species were first recorded in the eastern part of the Vistula Lagoon in 2010 (Rudinskaya and Gusev, 2012). The rapid spread of the common rangia has resulted in the species also inhabiting the western part of the Vistula Lagoon (Warzocha and Drgas, 2013; Warzocha et al., 2016). In the subsequent years, reports of population establishment came from the southern Baltic (Janas et al., 2014; Wiese et al., 2016; Janas and Kendzierska, 2022; Panicz et al., 2022; Czerniejewski et al., 2023) and other areas of the Baltic Sea (Solovjova, 2014; Florin, 2017; Möller and Kotta, 2017; Solovjova et al., 2019; Karlsson et al., 2024).

We present observations on the occurrence of the common rangia in the Gulf of Gdańsk (Figure 1), excluding the Vistula Lagoon. The presence of *R. cuneata* was noted during multiple macrozoobenthos studies carried out in differ-

ent seasons between 2014 and 2024, using both qualitative and quantitative methods. In the distributaries of the Vistula River (the Martwa Wisła River, the Wisła Śmiała River), the Motława estuary, and the Puck Lagoon, sampling was conducted from small vessels. In the open waters, samples were collected from the decks of the r/v *Elisabeth Mann-Borgese* and r/v *Oceanograf*. Quantitative samples were collected using a Van Veen grab sampler (0.1 m² sampling area, 1 mm sieve). Qualitative samples were collected manually in the near-shore zone, using hand nets and small dredges, and in deeper waters by dredging from vessels, or using small hand grabbers from piers and marinas. At several sites, sampling was carried out more than once. At all sites, bottom water was analysed for temperature and salinity using portable WTW GmbH meters.

In the study area, the common rangia was first observed in the Wisła Śmiała River in 2014 (Figure 1) (Janas et al., 2014), and in the same year also in the coastal zone of the Gulf of Gdańsk near Gdynia (Skóra, 2015) and in the Vistula River prodelta (Figure 1). In the subsequent years, individuals were observed in the distributaries of the Vistula River and the Motława River, in the Puck Lagoon (for the first time in 2017) and in the open waters of the Gulf of Gdańsk. In the conducted surveys, the common rangia was observed at sites with depths ranging from 0.3


Figure 1. Year of the first observations of *Rangia cuneata* in the Gulf of Gdańsk in 2014–2024.

49 to 20 m, in different seasons of the year. In general, in the
 50 Gulf of Gdańsk, wedge clams were observed at shallow
 51 sites, down to a depth of 9.5 m, with two exceptions: the
 52 sites in the vicinity of Sopot (12 m) in the western part
 53 of the Gulf and in the Vistula River prodelta, where the
 54 species was observed up to a depth of 20 m. No *R. cuneata*
 55 individuals or empty shells were observed at sites deeper
 56 than 20 m.

57 Salinity (< 7.5) and a wide range of temperatures (from
 58 close to 0°C to as high as 22°C) of the bottom water at the
 59 sites where the common rangia was collected (Table 1)
 60 correspond to those reported in different areas of its oc-
 61 currence in the Baltic Sea (i.e., Rudinskaya and Gusev, 2012;
 62 Möller and Kotta, 2017; Solovjova et al., 2019). In its native
 63 range, the common rangia lives in estuaries with salinity
 64 ranging from 0 to 15 (LaSalle and de la Cruz, 1985) and
 65 a temperature ranging from 2°C to 30°C (Cain, 1975). Dur-
 66 ing the analysed period, we recorded a low abundance
 67 of the common rangia in the Gulf of Gdańsk (up to 10
 68 ind. m⁻²) and the Puck Lagoon (10–30 ind. m⁻²). The
 69 highest densities were recorded in the distributaries of
 70 the Vistula River and the Motława River, ranging from 10
 71 ind. m⁻² to a maximum abundance of 1940 ind. m⁻² in
 72 the Wisła Śmiała River (Figure 2). In other regions of the
 73 Baltic Sea, the highest abundance of the common rangia
 74 was recorded in the eastern part of the Vistula Lagoon
 75 (Rudinskaya and Gusev, 2012). High abundance of the bi-
 76 valves (> 100 ind. m⁻²) was observed across a wide range
 77 of salinity (from 3.6 to 6.8) and temperature (from 0.6°C

78 to 21°C). Both at the lowest and highest temperatures, the
 79 abundance exceeded 500 ind. m⁻² (Figure 2). Based on
 80 the data obtained in these studies, it is not possible to con-
 81 clude whether *R. cuneata* shows any preference for specific
 82 combinations of recorded temperature and salinity. Very
 83 few records of the species come from areas with both low
 84 salinity and low temperature, as we did not collect samples
 85 in such conditions. In the Vistula Lagoon and the Szczecin
 86 Lagoon (southern Baltic Sea), the common rangia was ob-
 87 served in areas with very low salinity, ranging respectively
 88 from 0.5 to 4.8 (Warzocha et al., 2016) and from 0.3 to 2.0
 89 (Czerniejewski et al., 2023), where temperatures range
 90 from 0°C to 27°C and are also low in winter (Rudinskaya
 91 and Gusev, 2012; Dąbrowski et al., 2023).

92 In the Gulf of Mexico, *R. cuneata* occurs on various
 93 types of seabed, including sandy, muddy, and vegetated
 94 substrates (LaSalle and de la Cruz, 1985; Auil-Marshalleck
 95 et al., 2000). At all observation sites in the Baltic Sea to date,
 96 *R. cuneata* has been recorded on a wide range of sediments,
 97 from silt and sandy-muddy sediments rich in organic mat-
 98 ter (Vistula Lagoon, Motława estuary, Vistula Delta, north-
 99 ern part of the Stockholm archipelago, Szczecin Lagoon –
 PROEKO, 2010; Warzocha et al., 2016; Czerniejewski et al.,
 100 2023; Miernik et al., 2023; Karlson et al., 2024) through
 101 fine- and medium-grained sands (Vistula Lagoon, Puck
 102 Lagoon, Wisła Śmiała River, Vistula River prodelta, south-
 103 ern part of the Stockholm archipelago, Pomeranian Bay –
 104 PROEKO, 2010; Warzocha et al., 2016; Jegliński et al.,
 105 2022; Panicz et al., 2022; Miernik et al., 2023; Karlson
 106

Figure 2. Salinity and temperature at sites with *Rangia cuneata* in the Baltic Sea. The circles represent the abundance (ind. m⁻²) of *R. cuneata* calculated from a single grab per site; black dots represent the presence of the common rangia (qualitative samples); blue diamonds represent data from the literature (Solovjova et al., 2019; Tuszer-Kunc et al., 2020; Świeżak et al., 2021; Wilman et al., 2023).

et al., 2024), to coarse-grained sand and gyttja outcrops (Puck Lagoon – Jegliński et al., 2022).

In our study, specimens ranging from 1.4 mm to 50.4 mm in length were collected. Except for two observations, one in the Vistula River prodelta (2014) and one in the Puck Lagoon (2017), adult bivalves, i.e., those larger than 10 mm according to Karlson et al. (2024), were found at all stations. The largest individuals reported to date from the Baltic Sea were a 48.1 mm long specimen from the southern part of the Puck Lagoon and a 50.4 mm long clam from the mouth of the Wiśla Śmiała River, both collected in 2022. *R. cuneata* collected in the Vistula River prodelta did not exceed 35.8 mm (2022). Although in their native habitat individuals of this species can reach a length of over 80 mm (LaSalle and de la Cruz, 1985), research on the length of specimens from the Baltic Sea (Ezhova, 2012; Warzocha and Drgas, 2013; Dąbrowski et al., 2023) has not reported individuals larger than those observed in the Gulf of Gdańsk.

Since the first observations of *R. cuneata* in the southern part of the Puck Lagoon and in the distributaries of the Vistula River, clams have been recorded in benthic studies in the subsequent years, in all seasons. In late spring 2022 in the Puck Lagoon and in summer 2023 in the Wiśla Śmiała

River and the Martwa Wiśla River, we observed a mass mortality resulting in thousands of empty shells lying on the surface of sediment or remaining buried in the surface sediments. This phenomenon is known from the Vistula Lagoon, where mass mortality after winter was explained by the exhaustion of organisms caused by low temperatures during long winters, dissolved oxygen deficiencies in the bottom zone, and bacterial infections (Warzocha et al., 2016; Korniów et al., 2018; Świeżak et al., 2021) or high energy expenditure on osmoregulatory processes (Tuszer-Kunc et al., 2020). Mass mortality of the common rangia in the Puck Lagoon results in its patchy and ephemeral distribution, which is a known effect in the case of alien species found in their non-indigenous habitats (Houziauks et al., 2011). However, due to its r-reproductive strategy and hydrographic characteristics of the distributaries of the Vistula River (Cieśliński et al., 2017), *R. cuneata* is a stable component of the Vistula River.

Given the conditions under which the common rangia lives in the Baltic Sea and in its native range, the species has the potential to spread further in the Baltic waters, particularly in brackish zones characterised by high biological productivity. Its occurrence is possible not only in further estuaries, but potentially also in brackish and

Table 1. Depth range and environmental parameters at the sites where *Rangia cuneata* was found in 2014–2024.

Parameter	Vistula Delta, Motława estuary	Puck Lagoon	Gulf of Gdańsk excluding Puck Lagoon
Depth range [m]	3.5–9.5	0.3–5.2	0.3–19.5
Salinity	1.2–7.1	5.8–7.3	6.9–7.0
Temperature [°C]	0.7–23.0	2.8–22.1	4.0–18.7

155 saline water reservoirs, such as coastal lakes or inland wa-
156 ter channels, as a result of human activity, if introduced
157 there. The increase in coastal water temperature in the
158 Baltic Sea (Zalewska et al., 2024) due to climate change
159 may also be a factor favouring the spread of this warm-
160 water clam. By altering the habitat and the food web in the
161 invaded area, the common rangia may definitely affect the
162 functioning of the colonised ecosystem.

Conflict of interest

163 None declared.

References

165

166 Auil-Marshalleck, S., Robertson, C., Sunley, A., Robinson, L., 2000. *Preliminary review of life history and abundance of the Atlantic Rangia (Rangia cuneata) with implications for management in Galveston Bay, Texas*. Manage. Data Ser. 171 (1), 1–31.

167 Cain, T. D., 1975. *Reproduction and recruitment of the brackish water clam, Rangia cuneata in the James River, Virginia*. Fish. Bull. 73 (2), 412.

168 Cieśliński, R., Pietruszyński, Ł., Duda, F., 2017. *Differentiation flow in the waters of the hydrographic systems of western part of the Martwa Wisła and Wisła Śmiała*. Przegl. Geofiz. (3–4), 197–215.

169 Czerniejewski, P., Dąbrowski, J., Brysiewicz, A., Formicki, K., 2023. *Population structure and density of a new invasive species Rangia cuneata in the Szczecin Lagoon (Odra/Oder estuary, Poland)*. Aquat. Invasions 18 (3), 371–384. <https://doi.org/10.3391/ai.2023.18.3.109673>

170 Dąbrowski, J., Czerniejewski, P., Brysiewicz, A., Więcaszek, B., 2023. *Morphometrics, growth and condition of the invasive bivalve Rangia cuneata during colonisation of the Oder Estuary (North-Western Poland)*. Water 15 (19), 3331.

171 Ezhova, E. E., 2012. *Novyj selenets v Baltiyskye Morye–mollusc Rangia cuneata (Bivalvia: Mactridae)*. Marin. Ecol. J. 11, 29–32.

172 Florin, A. B., 2017. *Rangia cuneata introduction to Sweden/Baltic Sea. Information System on Aquatic Non-indigenous and Cryptogenic Species*. World Wide Web Electronic Publ., www.corpi.ku.lt/databases/aquanis (Ver. 2; Accessed 2024-06).

173 Hopkins, S. H., 1970. *Studies on brackish water clams of the genus Rangia in Texas*. Proc. Nat. Shellfisheries Assoc. 60, 5–6.

174 Houziauks, J., Craeymeersch, J., Merckx, B., Kerckhof, F., an Lancker, V., Courtens, W., Stienen, E., Perdon, J., Goudswaard, P.C., Van Hoey, G., Vigin, L., Hostens, K., Vinckx, M., Degraer, S., 2011. *Ecosystem sensitivity to invasive species*, EnSIS. Final report. Belgian Sci. Policy Office, Brussels, 100 pp.

175 Janas, U., Kendzierska, H., Dąbrowska, A. H., Dziubińska, A., 2014. *Non-indigenous bivalve the Atlantic rangia Rangia cuneata in the Wisła Śmiała River (coastal waters of the Gulf of Gdańsk, the southern Baltic Sea)*. Oceanol. Hydrobiol. Stud. 43, 427–430. <https://doi.org/10.2478/s13545-014-0158-3>

176 Janas, U., Kendzierska, H., 2022. *Makrozoobentos Zatoki Puckiej*. [In:] Bolałek, J., Burska, B., (Eds.), *Zatoka Pucka Tom III. Aspekty świata ożywionego*. Wyd. Uniw. Gdańsk, 183–200.

177 Jegliński, W., Kramarska, R., Uścinowicz, S., Zachowicz, J., 2009. *Sediments*. [In:] Gic-Grusza, G., Kryla-Straszewska, L., Urbański, J., Warzocha, J., Węsławski, J. M., (Eds.), *Atlas of Polish marine areas bottom habitats*. Broker Innowacji, Gdynia, 28–29.

178 Karlson, A. M., Kautsky, N., Granberg, M., Garbaras, A., Lim, H., Liénart, C., 2024. *Resource partitioning of a Mexican clam in species-poor Baltic Sea sediments indicates the existence of a vacant trophic niche*. Sci. Rep. 14 (1), 12527. <https://doi.org/10.1038/s41598-024-62832-3>

179 Korniów, R., Pawlikowski, K., Drgas, A., Rolbiecki, L., Rychter, A., 2018. *Mortality of post-settlement clams Rangia cuneata (Mactridae, Bivalvia) at an early stage of invasion in the Vistula Lagoon (South Baltic) due to biotic and abiotic factors*. Hydrobiologia 811, 207–219. <https://doi.org/10.1007/s10750-017-3489-4>

180 LaSalle, M. W., de la Cruz, A., 1985. *Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Common Rangia*. US Fish Wildlife Service. Biol. Rep. 82 (11.31). US Army Corps Eng. TR EL-82-4, p. 16.

181 Miernik, N. A., Janas, U., Kendzierska, H., 2023. *Role of macrofaunal communities in the Vistula River plume, the Baltic Sea—Bioturbation and bioirrigation potential*. Biol. 12 (2), 147. <https://doi.org/10.3390/biology12020147>

182 Möller, T., Kotta, J., 2017. *Rangia cuneata (GB Sowerby I, 1831) continues its invasion in the Baltic Sea: the first record in Pärnu Bay, Estonia*. Bioinvasions Rec. 6 (2), 167–172. <https://doi.org/10.3391/bir.2017.6.2.13>

183 Panicz, R., Eljasik, P., Wrzecionkowski, K., Śmietańska, N., Biernaczyk, M., 2022. *First report and molecular analysis of population stability of the invasive Gulf wedge clam, Rangia cuneata (GB Sowerby I, 1832) in the Po-*

252 meranian Bay (Southern Baltic Sea). Eur. Zool. J. 89(1),
253 568–578.
254 <https://doi.org/10.1080/24750263.2022.2061612>

255 PROEKO, 2010. *Modernizacja wejścia do portu wewnętrzne-
256 trznego w Gdańsku. Etap II przebudowa szlaku wod-
257 nego na Martwej Wiśle i Motławie*. Raport o oddziały-
258 waniu na środowisko przedsięwzięcia pn. UM, Gdynia,
259 391 pp.

260 Rudinskaya, L. V., Gusev, A. A., 2012. *Invasion of the North
261 American wedge clam *Rangia cuneata* (GB Sowerby I,
262 1831) (Bivalvia: Mactridae) in the Vistula Lagoon of
263 the Baltic Sea*. Russ. J. Biol. Invasions 3 (3), 220–229.

264 Skóra, K.E., 2015. Nowe muszelki w Zatoce Gdańskiej.
265 [https://hel.ug.edu.pl/2015/01/06/nowe-muszelki-
266 i-w-zatoce-gdanskiej](https://hel.ug.edu.pl/2015/01/06/nowe-muszelki-w-zatoce-gdanskiej) (Accessed 2024-06).

267 Solovjova, S., 2014. *Rangia cuneata introduction to Lithuania/Baltic Sea. AquaNIS. Information System on Aquatic
268 Non-Indigenous and Cryptogenic Species*. [www.corpi.
269 ku.lt/databases/aquanis](http://www.corpi.ku.lt/databases/aquanis), Ver. 2. (Accessed 2024-06).

270 Solovjova, S., Samuilovienė, A., Srébalienė, G., Minchin, D.,
271 Olenin, S., 2019. *Limited success of the non-indigenous
272 bivalve clam *Rangia cuneata* in the Lithuanian coastal
273 waters of the Baltic Sea and the Curonian Lagoon*.
274 Oceanologia 61(3), 341–349.
275 <https://doi.org/10.1016/j.oceano.2019.01.005>

276 Świeżak, J., Smolarz, K., Michnowska, A., Świątalska, A.,
277 Sobczyk, A., Korniów, R., 2021. *Physiological and mi-
278 crobiological determinants of the subtropical non-
279 indigenous *Rangia cuneata* health and condition in the
280 cold coastal waters of the Baltic Sea: the Vistula Lagoon
281 case study*. Aquat. Invasions 16 (4).
282 <https://doi.org/10.3391/ai.2021.16.4.05>

283 Tuszer-Kunc, J., Normant-Saremba, M., Rychter, A., 2020.
284 *The combination of low salinity and low temperature
285 can limit the colonisation success of the non-native bi-
286 valve *Rangia cuneata* in brackish Baltic waters*. J. Exp.
287 Mar. Biol. Ecol. 524, 151228.
288 <https://doi.org/10.1016/j.jembe.2019.151228>

289 Warzocha, J., Drgas, A., 2013. *The alien gulf wedge clam
290 (*Rangia cuneata* GB Sowerby I, 1831) (Mollusca: Bi-
291 valvia: Mactridae) in the Polish part of the Vistula La-
292 goon (SE. Baltic)*. Folia Malacolog. 21 (4), 291–292.
293 <https://doi.org/10.12657/folmal.021.030>

294 Warzocha, J., Szymanek, L., Witalis, B., Wodzinowski, T.,
295 2016. *Seawater temperature changes in the southern
296 Baltic Sea (1959–2019) forced by climate change. The
297 first report on the establishment and spread of the alien
298 clam *Rangia cuneata* (Mactridae) in the Polish part
299 of the Vistula Lagoon (southern Baltic)*. Oceanologia
300 58 (1), 54–58.
301 <https://doi.org/10.1016/j.oceano.2015.10.001>

302 Wiese, L., Niehus, O., Faass, B., Wiese, V., 2016. *Seawa-
303 ter temperature changes in the southern Baltic Sea
304 (1959–2019) forced by climate change. Ein weiteres
305 Vorkommen von *Rangia cuneata* in Deutschland (Bi-*

306 valvia: Mactridae). Schriften zur Malakozool. 29,
307 53–60.

308 Wilman, B., Bełdowska, M., Rychter, A., Korniów, R., 2023. *Seawater temperature changes in the southern Baltic
309 Sea (1959–2019) forced by climate change. Different
310 pathways of accumulation and elimination of neuro-
311 toxicant Hg and its forms in the clam *Atlantic rangia*
312 (*Rangia cuneata*)*. Sci. Total Environ. 858, 160018.
313 <https://doi.org/10.1016/j.scitotenv.2022.160018>

314 Zalewska, T., Wilman, B., Łapeta, B., Marosz, M., Biernacik,
315 D., Wochna, A., Saniewski, M., Grajewska, A., Iwaniak,
316 M., 2024. *Seawater temperature changes in the south-
317 ern Baltic Sea (1959–2019) forced by climate change*.
318 Oceanologia 66 (1), 37–55.
319 <https://doi.org/10.1016/j.oceano.2023.08.001>

320 321