

Women are successful in marine science, but not in its narrative. A case study from Poland

Paulina Pakszys¹, Jan Marcin Węsławski^{1,*}, Sławomir Sagan¹, Agnieszka Skorupa²

Abstract

Active participation of women in marine field work (research cruises) was almost nonexistent before the mid-1970s, and slowly increased to a present day 50:50 share in Poland. The detailed analysis is presented for the largest marine research institute in Poland with 200 employees and regular (over 240 days per year) in the sea presence onboard r/v *Oceania*. The overall share of women in the scientific activities (research papers) is almost 50%, with higher share in chemistry (60%) and lower in marine physics (40%). The share of women as leaders in external projects is equal to men and the scientific performance (measured as Hirsch index) is statistically the same as men researchers, however men researchers present both highest and lowest scores, contrary to more equal distribution of results among women. The striking difference is visible in the outreach activity – mainstream media releases, where men are responsible for nearly 90% of events for adult audience. The issue is presented in the context of international research on women presence in the science (STEM) and similar patterns around the globe.

Keywords

Women; Marine science; Gender equality; Media

¹ Institute of Oceanology, Polish Academy of Science, Powstańców Warszawy 55, Sopot 81–712, Poland

² Institute of Psychology, Silesian University, Grażyńskiego Street 53, Katowice 40–126, Poland

*Correspondence: weslaw@iopan.pl

Received: 23 September 2025; revised: 19 November 2025; accepted: 3 December 2025

1. Introduction

The internationally recognized challenge of gender equality in science or in STEM (Science, Technology, Engineering, Mathematics) is an object of numerous sociological analyses and political initiatives as women formed 29.3% of the research personnel globally (UIS, 2024). The general conclusion is often that the mental capability of women is no different from men's, and factors other than competence determine the success of women in these fields.

Despite progress in this research, men continue to obtain a higher proportion of undergraduate and graduate degrees in the physical sciences, mathematics, computer science, and engineering than women do (UIS, 2024) and women remain underrepresented in science, technology, engineering, and mathematics (STEM) occupations (Hill et al., 2010).

The highest proportion of women in science was recorded in Central Asia, Latin America, and the Caribbean – over 40%. The lowest was in Southwestern Asia (19%) and Eastern Asia (21%). Women are better represented in fields such as social sciences, biology, or medicine. Dras-

tic inequalities persist in engineering, computer science, and physics – in some countries, women account for less than 20% of the scientific workforce. UNESCO gives figure 33.9% of women in STEM jobs in Western Europe, compared to 38.7% in the Eastern Europe (UIS, 2024).

Marine science in this context is very specific, as it is associated with additional demand – namely physical work at sea and usually long separation from home during marine cruises.

Marine research in Poland, until the 2000s, was closely associated with fishery science cruises, often long-term and long-distance. Polish fishery-oriented Antarctic cruises in the 1970s usually required a researcher to be vessel-based for 3 to 9 months (Sea Fisheries Institute in Gdynia, personal comm.). This requirement, apart from the problem of equality in wages and restricted access to higher positions (Hub Ocean, 2023, Table 1), likely explains why women were significantly underrepresented in the marine field research in Poland prior to the 1990s. Major change occurred with the adoption of a new logistics model, i.e. airline transfer of the research crew to the port of embarkment nearest to the target research area, which resulted in shortening the time at sea for an individual researcher to present day 4–5 weeks.

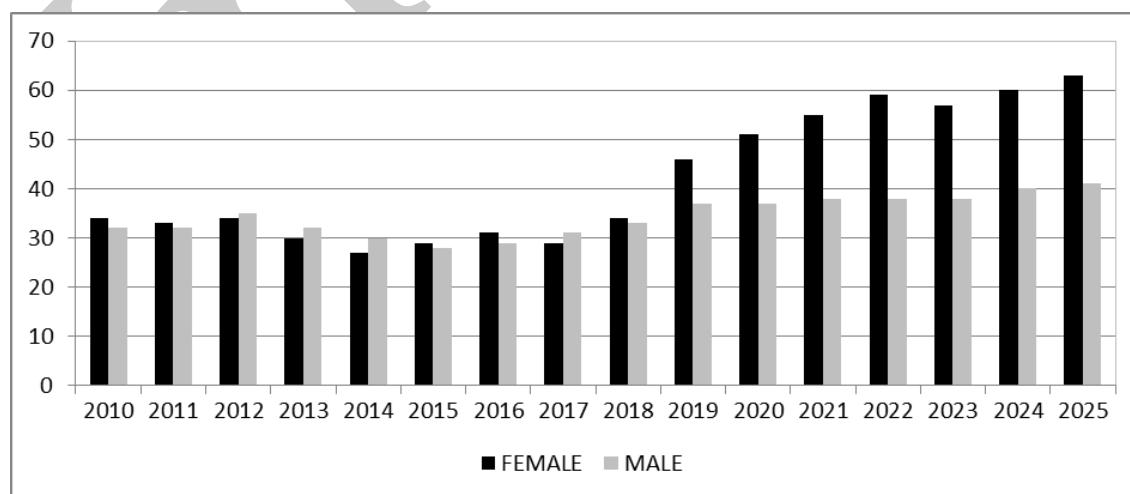
Table 1. Initiatives promoting women participation in marine research.

Name	Web address
Women in Ocean Science	https://www.facebook.com/womeninoceanscience/
NOAA. Making waves: Notable Women in Ocean Science	https://oceanservice.noaa.gov/news/womens-history-month/
Society of women in marine science	https://swmsmarinescience.com/
Network of women in marine science	https://wims.wiomsa.org/
APEC Women in Ocean Science Report	https://www.apec.org/publications/2023/08/apec-women-in-ocean-science-report
Hub Ocean	https://www.hubocean.earth/press/news/closing-the-gender-gap-in-ocean-science

46 Our aim was to examine the recent 30-year history of
 47 gender balance in employment, field work and scientific
 48 performance and to follow the evolution of women's contribu-
 49 tion to marine science in Poland in general. We also
 50 explored to what extent ecofeminist theory offers useful
 51 insights into the challenges women face in marine science.
 52 The case study is focused on the largest marine research in-
 53 stitute in Poland, Institute of Oceanology, Polish Academy
 54 of Sciences (IO PAN), as a representative.

2. Material

55 We have examined the archives of the employment career data, IO PAN internal HR archives 1986–2024, the
 56 results of the grant projects and the scientific performance
 57 of researchers present in SCOPUS data base (H-index as
 58 of February 2024). Data about outreach were collected
 59 from the web page that keeps the register of mainstream
 60 media releases and the popular science movies produced
 61 by the Institute's employees. Statistics on marine educational
 62 books are taken from the web page advertisement of
 63 the main booksellers. IO PAN, from 1995, was the largest
 64 marine research institute in Poland with a highest and,
 65 over the years, growing employment of the research staff.
 66 Hence, to large extent, it may be representative in respect
 67 of gender issues for Poland. Anonymous data are available
 68 on request.


69
 70 of gender issues for Poland. Anonymous data are available
 71 on request.

3. Results

72 Employment on research positions in the Institute over
 73 the last 15 years shows slight variations in balance around
 74 a generally equal number of men and women with an in-
 75 creased number of female researchers lately (Figure 1).
 76 The acquisition of external funds – success rate in 320 re-
 77 search grants was close to balanced (53% of men and 47%
 78 women) with strong interannual variation, where men's
 79 share in grants ranged from 20 to 80% (Figure 2).

80 Number of permanent positions and degrees hold by
 81 females and males (Figure 3) shows general balance, with
 82 slight prevalence of men on full professor positions.

83 Statistics of the heads of the organisational units
 84 (Figure 4) shows, that some positions were held by men
 85 only (general directors, elected in open competition by
 86 an external body), other positions like research units (de-
 87 partment leaders) were elected by the employees of the
 88 department, here the gender balance was kept, some po-
 89 sitions in administration were traditionally occupied by
 90 women (chief accountant, chief of project unit) other by
 91 men (chief engineer and IT head).

Figure 1. Number of employees on scientific positions at IO PAN (y-axis).

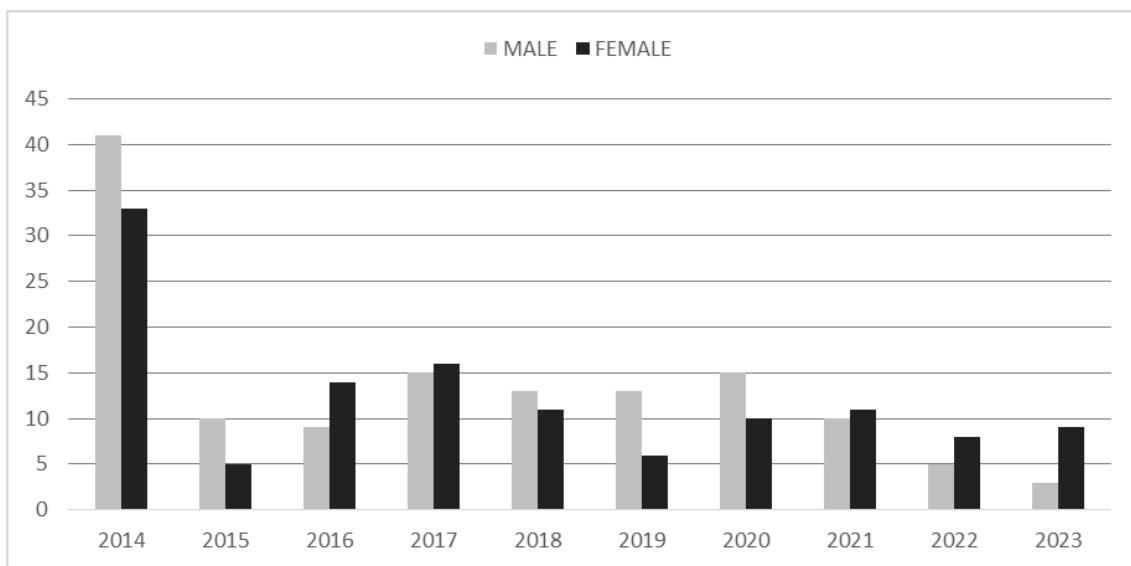


Figure 2. Number of employees – grant leaders at IO PAN (y-axis).

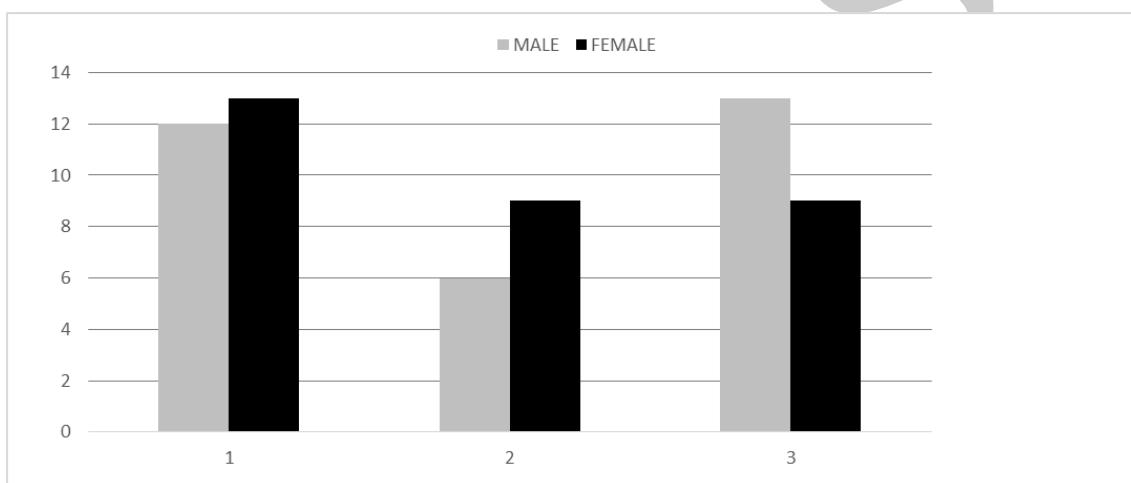


Figure 3. Number of employees with academic degree at IO PAN (1 – PhD, 2 – habilitation, 3 – professorship) (y-axis).

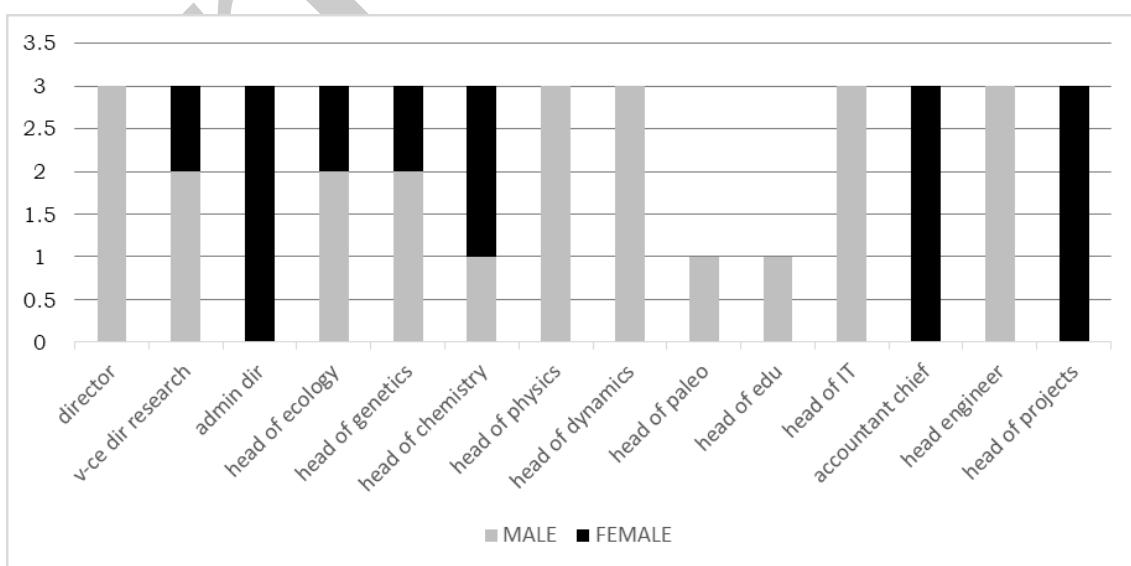
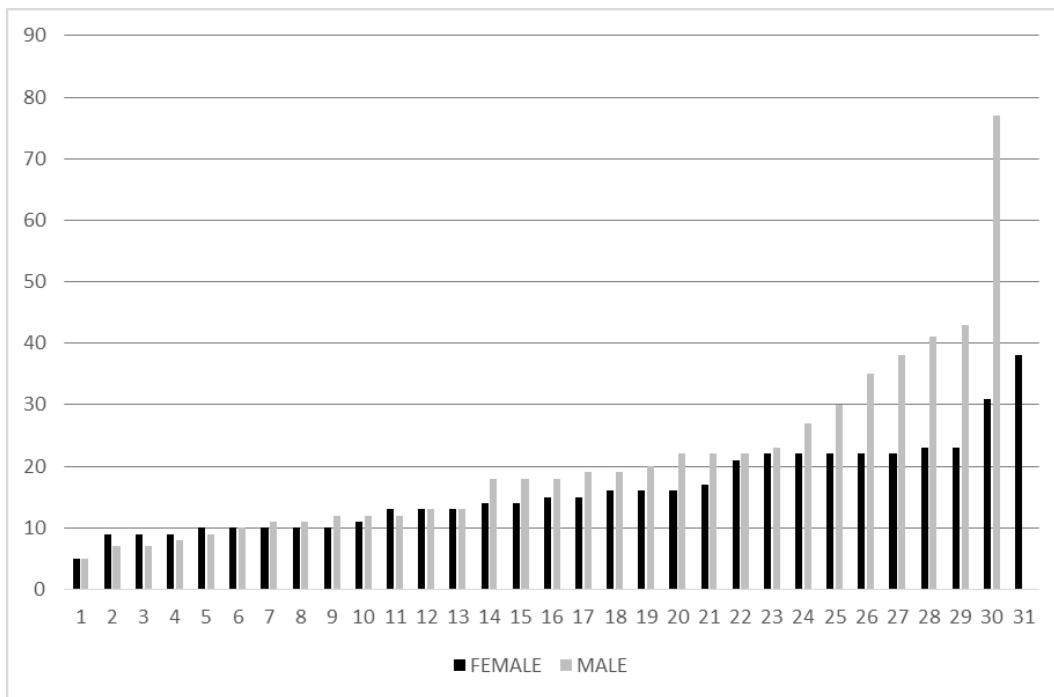
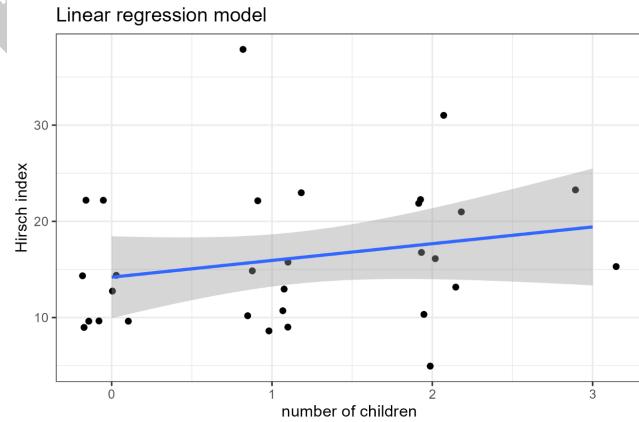



Figure 4. The last 24 years at IO PAN, 4-year terms, heads of organizational units (y-axis).

Figure 5. Scientific performance (H-index) of 31 female and 28 male marine researchers (phD plus) at IO PAN as of year 2023.


92 Scientific performance (H-index) of 28 male and 31
 93 female researchers (Figure 5), shows balanced results;
 94 the median is similar, 17 to 20, while the standard de-
 95 viation differs significantly, 7 for females versus 16 for
 96 males.

97 The relation between family status (no children, 1, 2,
 98 3 kids) and scientific performance of female researchers
 99 is apparently not correlated (Figure 6). Using the number
 100 of children as a predictor of the Hirsch index (H-index)
 101 value yielded an R-squared of 0.0507, indicating that only
 102 approximately 5% of the variance in the H-index can be
 103 explained by this variable. Furthermore, the obtained p-
 104 value ($p = 0.232$) exceeds conventional significance thresh-
 105 olds, providing insufficient evidence to reject the null hy-
 106 pothesis. Thus, we conclude that there is no statistically
 107 significant effect of the number of children on the H-index
 108 magnitude.

109 Participation of female and male researchers in 264
 110 scientific cruises onboard *r/v Oceania*, shows 1884 berths
 111 for men and 1433 berths for women, with female ranging
 112 between 39 to 52% of cruise team (Figure 7).

113 Although most of the presented above parameters show
 114 very balanced performance of male and female researchers,
 115 the striking difference is the frequency of mainstream me-
 116 dia releases by male and female scientists. This is the sit-
 117 uation, when TV or radio journalist ask Institute for ad
 118 hoc statement on the current problem – like a rapid algal
 119 bloom or a dead whale on the shore (Figure 8).

120 The analysis of popular science books on marine sci-

Figure 6. Family status and performance (H-index) in PhD-holding female marine researchers (28 persons from IO PAN).

ence offered in Polish bookshops, shows the prevalence
 121 of male authors 52:5, while the offer for kids shows the
 122 predominance of females (Figure 9).

123 The initiative on ocean literacy, "Ocean non-handbook"
 124 targeted at junior schools and the younger generation of
 125 the general public, conducted by IO PAN in cooperation
 126 with The Sea Aquarium in Gdynia (Sea Fisheries Institute)
 127 <https://www.youtube.com/playlist?list=PLkobaySTd7iIznqJ01wRLJZajaaihyTg0> and presented on YouTube and
 128 Facebook, has been prepared by early-career researchers
 129 from the both institutes, and here the gender balance is
 130

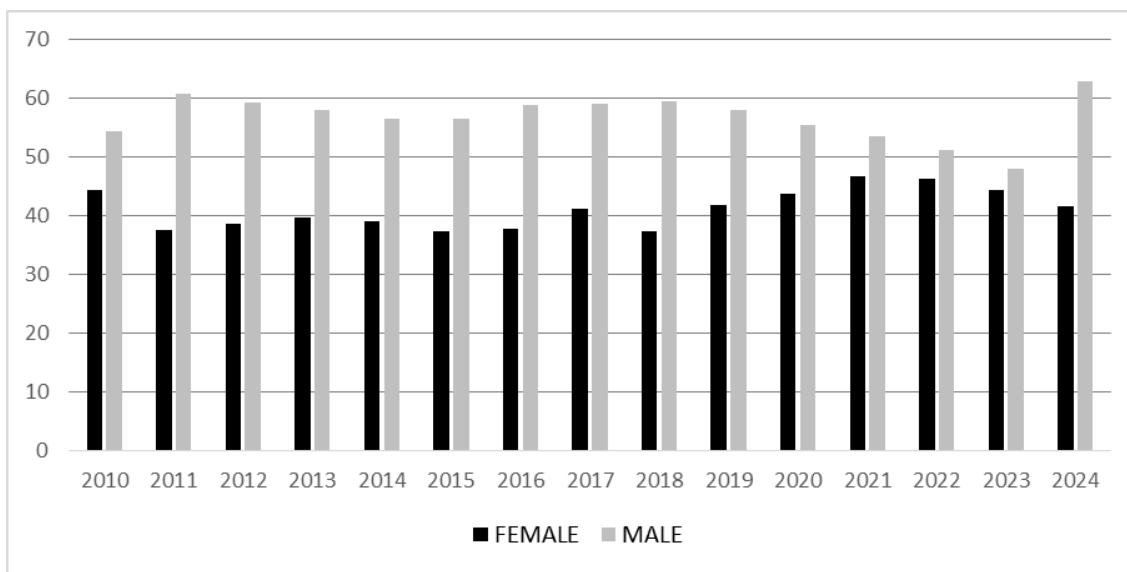


Figure 7. Number of research staff onboard r/v *Oceania* cruises (y-axis).

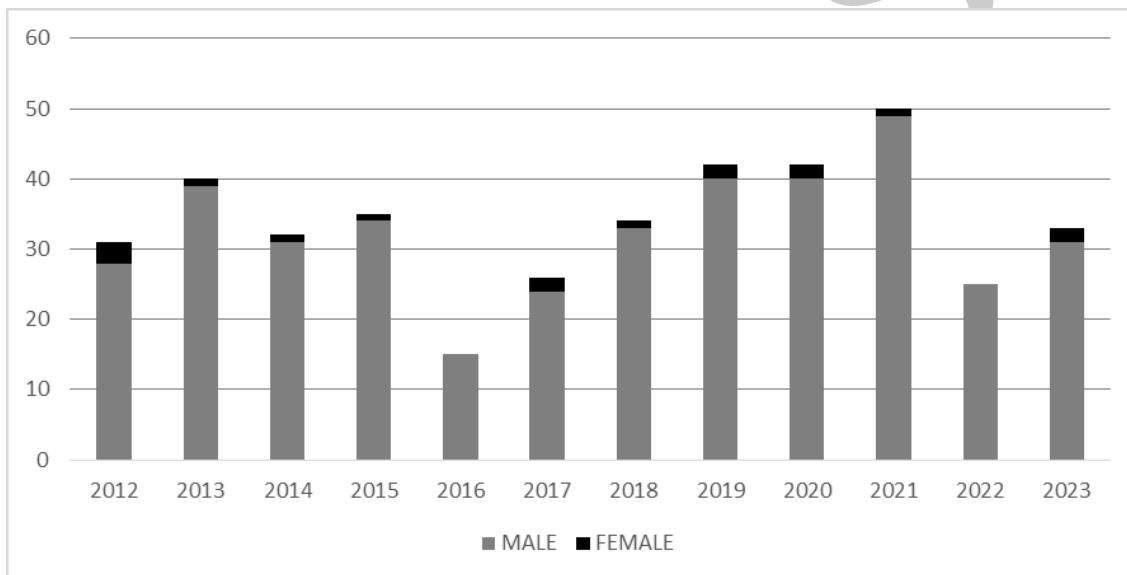
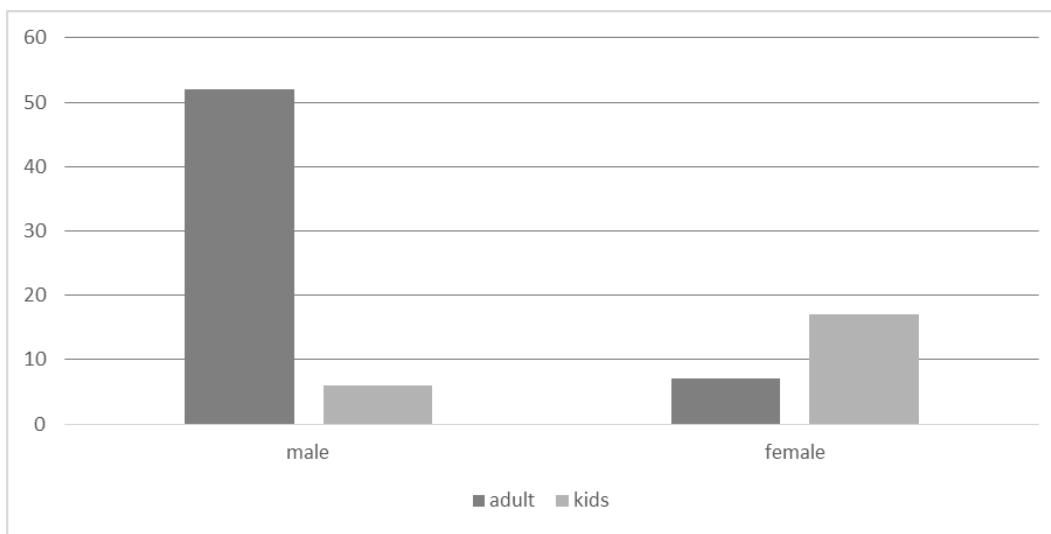


Figure 8. Number of science news in the mainstream media (TV, radio, newspapers) from IO PAN, between 2012 and 2023 (y-axis).


again skewed towards female researchers as presenters. From 183 short movies, 69% were presented by female researchers while 31% by males.

4. Discussion

Since 1974 the University of Gdańsk has offered oceanography as a separate course, a five-year degree program, leading to the Master of Science degree in biological or physical oceanography. The first group of graduates from 1979 consisted of 5 men and 15 women. To this day (2025) all five men from this first course achieved the position of full professor or equivalent, and none of the fifteen women

achieved the position in science, save for one as lab technician. In 2000's number of graduates rose to roughly 30 per year, with more women than men continuing the education in PhD schools. However, while achieving professorship, most of them are in marine chemistry and marine biology. That gender difference might be partially attributed to increased offer of specialisations in oceanography studies considered "soft", such as marine biology and marine ecology, and to reduced recruitment to physical oceanography. Early strands of ecofeminism posited that women are "naturally" closer to nature and thus inherently better predisposed to environmental protection (Mamzer, 2025). In effect, the offer of education paths might be a controlling

143
144
145
146
147
148
149
150
151
152
153
154
155

Figure 9. Number of authors of popular science marine books for adults (52) and for kids (23) available in Polish language (2010–2025) (y-axis).

156 factor that would select one gender over another in the
 157 field of marine research.

158 The most common concern in gender inequality is the
 159 pay gap between men and women and limited access to the
 160 key positions. Empirical research data demonstrate that
 161 men disproportionately occupy leadership positions in the
 162 natural sciences, while women face systemic devaluation
 163 – creating a stark contrast with essentialist assumptions
 164 (Perrin and Siriwardane-De Zoysa, 2017). However, this
 165 seems not to be the case of the analyzed IO PAN, in which,
 166 as a governmental institution, salary depends on the held
 167 position and the length of employment, with no consideration
 168 of gender. Also the history and timeline of leadership
 169 positions show no significant gender difference there.

170 On the level of the European Union research agenda, all
 171 institutes eligible for Horizon framework programs (main
 172 source of funding for the marine research in the EU) need
 173 to publish “gender equality plans”, following the decision
 174 introduced with document “Horizon Europe: Regulation
 175 (EU) 2021/695 of the European Parliament and of the
 176 Council”. Appropriate internal regulations were then intro-
 177 duced and applied in participating institutions in Poland,
 178 including IO PAN. On the global level, the Intergovernmen-
 179 tal Ocean Commission at UNESCO claims a similar policy
 180 to UNESCO programs and actions (UNESCO, 2023).

181 Despite the efforts and regulations, the position of
 182 women in marine sciences is not fully balanced, as acc-
 183 cording to statistics, while 38% of marine researchers are
 184 women, only 28% hold senior researcher position. How-
 185 ever, it is still almost 10% higher than in comparison to
 186 other STEM disciplines (UNESCO, 2021).

187 **4.1 Access to infrastructure**

188 Success in marine research is commonly linked to access to
 189 large, expensive infrastructure, such as research vessel or

190 field stations. Nowadays Poland offers workplace on two
 191 polar stations (Arctic and Antarctic) and three regional
 192 class research vessels (*Oceania*, *Baltica*, *Oceanograf*) while
 193 in 1970–2000, large oceanic vessels were exploited for
 194 fisheries research (*Siedlecki*, *Bogucki*, *Wieczno*). Important
 195 opportunities are being offered through the international
 196 cooperation in research projects, and in effect, Polish ma-
 197 rine researchers were active in German (*Polarstern*, *Sonne*),
 198 Norwegian (KV *Svalbard*, *Lance*, *Hellmer Hansen*, *G.O. Sars*),
 199 US (*Helly*, *Polar Star*), Canadian (*St. Laurent*, *Amundsen*).
 200 Women researchers were present on all those platforms,
 201 very likely in equal proportion to men, however precise
 202 statistics are not available (for the IO PAN researchers it
 203 was 50:50 proportion on international research vessels
 204 participation after the year 2000).

205 Although globally women’s representation in leader-
 206 ship roles is increasing, they remain significantly under-
 207 represented in scientific publications. Women are less fre-
 208 quently listed as first authors, indicating limited presence
 209 in research team leadership positions despite their grow-
 210 ing participation in high-impact journals. Similar trends
 211 are observed at conferences – while women constitute
 212 a substantial proportion of attendees, they are underrepre-
 213 sented as invited speakers, particularly those from ethnic
 214 minority groups (Legg et al., 2023).

215 Regarding awards, women are increasingly recognized
 216 in early-career categories, yet men continue to dominate
 217 senior-level distinctions. In governance bodies and com-
 218 mittees, female representation fluctuates around 30%,
 219 though some organizations – such as CLIVAR – are actively
 220 implementing diversity initiatives. Overall, progress is ev-
 221 ident but uneven, with persistent barriers, especially for
 222 women from minority backgrounds (Legg et al., 2023).

223 Women contribute indispensably to ocean manage-

ment. Their inclusion in sectors like fisheries is essential for understanding socio-ecological linkages in marine ecosystems. Often regarded as key drivers of sustainability due to their collaborative and inclusive approaches, women also lead initiatives for marine conservation and the global ocean commons, addressing frequently overlooked issues. Historically and contemporarily, women have played a pivotal role in shaping modern ocean governance, particularly in fisheries, marine conservation, and the blue economy. Their contributions are rooted in inclusivity and cooperation – qualities central to sustainable development (Gissi et al., 2018).

Carli et al. (2016) identify two primary factors contributing to gender disparities in science. First, social roles play a significant role: stereotypical traits ascribed to women – such as nurturing behaviour and emotionality – are often perceived as incompatible with qualities associated with scientific excellence, including objectivity, competitiveness, and independence. Second, women in STEM fields frequently encounter bias and discrimination, which undermines their job satisfaction and restricts career advancement opportunities (Vagni et al., 2025).

Comparative studies on gender representation in marine sciences/oceanography reveal persistent inequities. In-depth interviews with female scientists of diverse nationalities and career stages collaborating with German research institutes highlighted a pronounced overrepresentation of men among professors and senior faculty, despite women constituting the majority of students and PhD candidates (Perrin and Siriwardane-De Zoysa, 2017). Their key findings are generational difference (younger researchers report less overt discrimination), yet nearly all interviewees experienced gender based discrimination or sexual harassment during their careers (Perrin and Siriwardane-De Zoysa, 2017). Women in marine science continue to face bullying and verbal abuse (Legg et al., 2023), with harassment remaining a critical issue, particularly for students during field work (Clark et al., 2008).

Media representation plays a significant role by perpetuating gender stereotypes, predominantly portraying scientists as male while marginalizing or omitting women's achievements in the field.

In ocean sciences, women are more likely than men to engage in interdisciplinary research with social significance and participate in science communication and educational outreach (Clark et al., 2008). However, Corsbie-Massay and Wheatly (2022) emphasize that media stereotypes have tangible consequences for reinforcing gender inequalities in STEM fields. Women are not only underrepresented in media coverage but are also frequently depicted in less professional terms compared to their male counterparts. The authors advocate for systemic changes, including journalist education programs, editorial policy reforms, and broader transformation of media culture. They particularly stress that science and media should

not operate in isolation – building bridges between these domains through mentoring programs, media communication training, and active representation of women in public discourse is crucial. Our case study clearly confirms that situation, showing almost 90% of media coverage by men (Figure 8) and women's prevalence in the kids, products category only.

Research suggests that greater gender balance would positively impact marine conservation outcomes. Gender diversity enhances problem-solving effectiveness, with women demonstrating higher social sensitivity. Female researchers frequently raise important yet underrepresented issues in marine environmental protection. Increasing women's participation in marine science and conservation would lead to more innovative solutions for environmental challenges (Giakoumi et al., 2021).

The portrayal of scientists in mass media is widely recognized as a key factor contributing to the underrepresentation of women in engineering and technology (Chimba and Kitzinger, 2010). Research indicates that public perceptions and expectations of STEM professionals are more likely to be shaped by media depictions of female scientists than by direct interactions with them (Chambers and Thompson, 2020; Murphy et al., 2023; Robertson et al., 2018).

Few studies have addressed the core issue: the persistent, narrow framing of women in STEM by media professionals. While various initiatives aim to encourage girls to pursue science, the problem also lies in media representation (Corsbie-Massay and Wheatly, 2022). Current portrayals may exacerbate the *leaky pipeline* phenomenon, discouraging women from public engagement and influencing attitudes within STEM fields (Thébaud and Charles, 2018).

An analysis of UK media representations reveals stark disparities in how male and female STEM professionals are depicted (Chimba and Kitzinger, 2010). Historically, women scientists were rarely featured, and when they were, their roles were often reduced to being wives or mothers (LaFollette, 1988). Chimba and Kitzinger's (2010) study of the British press found that 84% of scientist profiles focused on men, compared to only 16% on women. Notably, 50% of profiles about female scientists referenced their clothing, appearance, or hairstyle, versus just 21% for men.

Contemporary media still exhibit *tokenism* – while outlets like *The New York Times* now feature near-equal representation of male and female scientists, women are disproportionately asked about work-life balance (Mitchell and McKinnon, 2019).

Female scientists are often invited to comment on others' research rather than their own, and their contributions are more likely to appear in "women's interest" sections or blogs (Chimba and Kitzinger, 2010; Mendick and Moreau, 2013; Nelkin, 1995). Journalists frequently emphasize

334 their appearance, sexuality, or other gendered traits, un-
 335 dermining their professionalism (Chimba and Kitzinger,
 336 2010).

337 This focus on superficial attributes risks delegitimizing
 338 women's expertise discouraging their media participation.
 339 Those who actively communicate science face additional
 340 challenges, including image depreciation and accusations
 341 of self-promotion, alongside sexist portrayals (Chimba and
 342 Kitzinger, 2010).

343 While the visibility of female scientists in media has
 344 increased in recent years (Benson-Greenwald et al., 2021),
 345 and children's media now makes conscious efforts to por-
 346 tray women as scientists (Previs, 2016), the stereotypical
 347 image of a scientist remains predominantly male. This
 348 archetype embodies characteristics not automatically as-
 349 crived to women in societal perceptions.

350 Although initiatives supporting women in marine sci-
 351 ences exist (e.g., the IOC-UNESCO *Initiative for Women Ma-
 352 rine Scientists*), systemic barriers continue to limit their
 353 participation in decision-making processes. To effectively
 354 manage ocean resources and achieve sustainable develop-
 355 ment goals – particularly SDG 14 – it is crucial to recognize
 356 the role of women and eliminate cultural and institutional
 357 obstacles that hinder their access to positions of power
 358 and influence (Gissi et al., 2018).

359 Burdett et al. (2022) propose moving beyond superfi-
 360 cial measures, such as quotas, toward structural reforms
 361 that support work-life balance, transforming organizational
 362 culture (including evaluation and promotion criteria), pro-
 363 viding leadership training on gender equality and uncon-
 364 scious bias, recognizing diverse forms of success beyond
 365 traditional "hard" metrics and engaging men as active allies
 366 in equity efforts.

367 Many respondents highlighted the unequal distribution
 368 of childcare responsibilities and its detrimental impact on
 369 women's research careers. Institutional and policy-level
 370 support is needed to empower women balancing caregiv-
 371 ing duties (Giakoumi et al., 2021). However this effect was
 372 not observed in our case study – childbearing and childcare
 373 not reflected by women's scientific career indicators.

374 Increasing the visibility of women scientists in media –
 375 including social media – is a critical step toward disman-
 376 tling stereotypes. While science communication is often
 377 relegated to women as a "softer" task (Johnson et al., 2014),
 378 their underrepresentation in media perpetuates harmful
 379 norms. Challenging the perception of women in STEM as
 380 a monolithic group – by showcasing their diverse roles as
 381 advocates, educators, and science communicators – could
 382 help reduce bias (AbiGhannam, 2016).

383 One of the novel ways in promoting women visibility
 384 in narratives about marine realm is the combination of
 385 Art and Science – Women View of the Sea (2025), where
 386 women researchers presents their favourite topic com-
 387 mmented by piece of art by women artists. This initiative pro-
 388 moted by Institute of Oceanology in 2022–2025 attracted

389 thanks to the art involved a broad audience of citizens,
 390 never interested in the marine science before (see on the
 391 project web page (<https://old.iopan.pl/projects/Kobiety2/index-eng.html>)).
 392

Acknowledgements

393 This article was supported with the MARBEFES EU Horizon
 394 project no 101060937, 2022–2026.
 395

Conflict of interest

396 None declared.
 397

References

398

399 AbiGhannam, N., 2016. *Madam science communicator: A ty-
 400 pology of women's experiences in online science com-
 401 munication*. Sci. Comm. 38 (4), 468–494.
<https://doi.org/10.1177/1075547016655545>

402 Benson-Greenwald, T.M., Joshi, M.P., Diekman, A.B., 2021. *Out of the lab and into the world: Analyses of social
 403 roles and gender in profiles of scientists in The New York
 404 Times and The Scientist*. Front. Psych. 12, 684777.
<https://doi.org/10.3389/fpsyg.2021.684777>

405 Burdett, H.L., Kelling, I., Carrigan, M., 2022. *TimesUp: Tack-
 406 ling gender inequities in marine and fisheries science*.
 407 J. Fish Biol. 100 (1), 4–9.
<https://doi.org/10.1111/jfb.14936>

408 Carli, L.L., Alawa, L., Lee, Y., Zhao, B., Kim, E., 2016. *Stere-
 409 types about gender and science: Women ≠ scientists*.
 410 Psych. Women Quart. 40 (2), 244–260.
<https://doi.org/10.1177/0361684315622645>

411 Chambers, A.C., Thompson, S., 2020. *Women, science and
 412 the media*. [In:] Ross K. (Ed.), *The International Ency-
 413 clopedia of Gender, Media, and Communication* Vol. 3,
 414 Wiley, 1532–1569.
<https://doi.org/10.1002/9781119429128.iegmc304>

415 Chimba, M., Kitzinger, J., 2010. *Bimbo or boffin? Women
 416 in science: An analysis of media representations and
 417 how female scientists negotiate cultural contradictions*.
 418 Publ. Underst. Sci. 19 (5), 609–624.
<https://doi.org/10.1177/0963662508098580>

419 Clark, L., Yoder, J., McNutt, M., Colton, M. C., 2008. *Women
 420 in oceanography: 20 years of progress, change, and
 421 challenge*. Oceanography 21 (3), 38–43.
<https://doi.org/10.5670/oceanog.2008.33>

422 Corsbie-Massay, C.L., Wheatley, M. G., 2022. *The role of me-
 423 dia professionals in perpetuating and disrupting stereo-
 424 types of women in STEM fields*. Front. Comm. 7,
 425 1027502.
<https://doi.org/10.3389/fcomm.2022.1027502>

426 Giakoumi, S., Pita, C., Coll, M., Fraschetti, S., et al., 2021. *Per-
 427 sistent gender bias in marine science and conservation
 428 calls for action to achieve equity*. Biol. Conserv. 257,
 429

430

431

432

433

434

435

436

437

438

438 109134.
 439 <https://doi.org/10.1016/j.biocon.2021.109134>

440 Gissi, E., Portman, M.E., Hornidge, A.K., 2018. *Un-gendering*
 441 *the ocean: Why women matter in ocean governance for*
 442 *sustainability*. Mar. Policy 94, 215–219.
 443 <https://doi.org/10.1016/j.marpol.2018.05.020>

444 Hill C., Corbett C., Rose A., 2010. *Why so few Woman in*
 445 *STEM*. AAUW, Washington DC, 134 pp.

446 HUB Ocean, 2023, <https://www.hubocean.earth/about>

447 Johnson, D.R., Ecklund, E. H., Lincoln, A. E., 2014. *Narratives*
 448 *of science outreach in elite contexts of academic science*.
 449 *Sci. Commun.* 36 (1), 81–105.
 450 <https://doi.org/10.1177/1075547013499142>

451 LaFollette, M.C., 1988. *Eyes on the stars: Images of women*
 452 *scientists in popular magazines*. *Sci. Technol. Hum. Val.*
 453 13 (3–4), 262–275.
 454 <https://doi.org/10.1177/016224398801300307>

455 Legg, S., Wang, C., Kappel, E., Thompson, L., 2023. *Gender*
 456 *equity in oceanography*. *Annual Review of Marine Science*, 15 (1), 15–39.
 457 <https://doi.org/10.1146/annurev-marine-032122-012349>

458 Mamzer, H., 2025. *Who cares about environment*. Zoophilologica, in press.

459 Mendick, H., Moreau, M.-P., 2013. *New media, old images: Constructing online representations of women and men in science, engineering and technology*. *Gender Educ.* 25 (3), 325–339.
 460 <https://doi.org/10.1080/09540253.2012.740447>

461 Mitchell, M., McKinnon, M., 2019. *“Human” or “objective” faces of science? Gender stereotypes and the representation of scientists in the media*. *Public Underst. Sci.* 28 (2), 177–190.
 462 <https://doi.org/10.1177/0963662518771081>

463 Murphy, K.M., Kelp, N.C., 2023. *Undergraduate STEM students’ science communication skills, science identity, and science self-efficacy influence their motivations and behaviors in STEM community engagement*. *J. Microbiol. Biol. Educ.* 24 (1), e00182-22.
 464 <https://doi.org/10.1128/jmbe.00182-22>

465 Nelkin, D., 1995. *Selling science: How the press covers science and technology*. W. H. Freeman & Co, 217 pp.

466 Perrin, S., Siriwardane-De Zoysa, R., 2017. *Women in marine science: The efficacy of ecofeminist theory in the wake of historical critique*. ZMT Working Paper Ser. 3.
 467 <https://doi.org/10.21244/zmt.2017.004>

468 Previs, K.K., 2016. *Gender and race representations of scientists in Highlights for Children: A content analysis*. *Scie. Comm.* 38 (3), 303–327.
 469 <https://doi.org/10.1177/1075547016642248>

470 Robertson Evia, J., Petermen, K., Cloyd, E., Besley, J., 2018. *Validating a scale that measures scientists’ self-efficacy for public engagement with science*. *Int. J. Sci. Educ. Pt. B*, 8 (1), 40–52.
 471 <https://doi.org/10.1080/21548455.2017.1371356>

472 Thébaud, S., Charles, M., 2018. *Segregation, stereotypes, and STEM*. *Social Sci.* 7 (7), 111.
 473 <https://doi.org/10.3390/socsci7070111>

474 UNESCO, 2021. *Global Ocean Science Report 2020: Charting Capacity for Ocean Sustainability*. UN.
 475 <https://doi.org/10.18356/9789216040048>

476 UNESCO, 2023. *UNESCO in action for gender equality: 2022–2023*. No. GEN/2023/AR/3 Rev.

477 UIS 2024. *The Gender Gap in Science. Status and Trends. February 2024*. UNESCO Institute of Statistics. SC-PBS-STIP/2024/FWIS/2, 8 pp.

478 Vagni, D., Tartarisco, G., Campisi, S., Cerbara, L., Dedola, M., Pedranghelu, A., Ceresa, A., 2025. *Psychophysiological correlates of science communicators*. *PLOS ONE*, 20 (3), e0320160.
 479 <https://doi.org/10.1371/journal.pone.0320160>

480 Women View of the Sea, 2025. *Art exhibition catalogue*. IO PAN, Sopot, 110 pp.